Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 12)

430 
ON THE COMPLEX OF LINES 
[859 
Collecting the terms multiplied by P, Q, R, ®, respectively, we have 
il = P {;ya8 3 — x/38 3 + Sway 3 + xy 3 8 — yy 4 } 
4- Q {— 3ya(38 2 + Sza 2 y8 — Swa 2 y 2 + Swa/3 2 8 — Sxay 2 8 + 3x/3' 2 8 2 } 
+ R {— za 3 8 + iva 3 y — wa(3 3 — 3x/3 3 8 + z/3 4 } 
4 ® {— 2 yza 2 8 2 — zwa 2 (38 + 2 xza/38' 2 4- 2ywa 2 y8 — xyay8 2 
4 w 2 a 2 /3y — 4z 2 a/3 2 8 + (— 2xw 4- 8yz) a/3y8 — 4y"ay 2 + x 2 j3y8 2 
4- zwa{3 2 y — 5ywa/3y8 — 5xz(3' 2 y8 + xy(3y 2 8 
— w' 2 /3 4 + \z 2 (3 3 y + (2xw — Qyz) /3' 2 y 2 4- ^!f(3y 3 — x 2 y 4 ], 
which may be written as follows:— 
O = P [y (a8 3 -y 4 )-\-x (y 3 8 — /38 3 )} + P {Sway 3 ) 
4- Q [Sx (/3 2 8 2 — aY 2 S) 4- 3w (a(3‘ 2 8 — a 2 Y 2 )} 4- Q (Sza 2 y8 — 3yoc/38 2 ) 
+ R {— z (a 3 8 — /3 4 ) + w (a 3 y — a/3 3 )} 
4 © \zw (— a 2 /38 + a8 2 y) 
4- xz 2 (a/38 2 — (3 2 y8) 
4 yw 2 (a 2 YS — a/3y 2 ) 
+ xy (— ay8 2 + /3y 2 8) 
+ xw 2 (— a/3y8 + /3 2 y 2 ) 
4 yz (—2a 2 8 2 + 8a/3y8 — 6/3 2 y 2 ) 
+ x 2 (/3y8 2 — 7 4 ) 
4- y 2 4 (— aY 2 S + /3y 3 ) 
+ ^ 2 4 (— a/3 2 8 + /3 3 y) 
4- w 2 (a?(3y — ¡3 4 ) 
+ R (— Sx/3 3 8) 
4- © (— 3xz/3 2 y8) 
4 © (— Sywa/3y 2 ) 
in which all the terms contained in the { } admit of expression in terms of 
P 0 , Q 0 , R 0 , © 0 ; the remaining six terms not included within { } may be written 
3wPa (y 3 — /38 2 ) 4- 3 (wP — yQ) a/38 2 — S®xz/3 2 y8, 
— SxR8 ({3 3 — a 2 y) 4 3 (—xR 4 zQ) o?y8 — 3%ywa(3y 2 ; 
which, observing that wP — yQ = xz%, and — xR 4- zQ = yw©, are 
— 3wPa (y 3 — ¡38 2 ) 4- 3iK2© (a/38 2 — /3 2 y8), 
— 3xR8 ((3 s — a 2 y ) 4- 3yw® (a 2 y8 — a/3y 2 ).
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.