Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 12)

492 
NOTE ON KIEPERt’s ¿-EQUATIONS. 
Moreover 
1 U 
, _ U id 11— U 2 — 1 
1 v? 1 — id v? (1 + u 2 + id) ’ 
id v 
u 
and thence 
1 (l M 4 
that is, 
V li 8 / 1 (w 8 -l)* 1 1 
iC (1 — u 8 )^ M id (1 — u 8 )^ M idM ’ 
L 2 = 1 + u 2 + u~ 2 . 
But we have 
u* = - 3 + 2 V2, 
and thence 
and 
w 2 = i (1 — V2), it -2 = i (1 + V2), 
Id = 1 + 2'i, 
whence 
L 12 + 10 L 6 - 
- 12 7 . 2 X 2 + 5 = (117 + 44 i) + 10 (- 11 - 2 i) -12 (1 + 2i)+ 5 = 0, 
or the ¿-equation is satisfied. 
Cambridge, 14 March 1887.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.