5A" + 15B" + 10G" - 10D" - Y ( G ' 2 + 2D' 2 ) “ 150 V5 (O' + 2D') - 1600 + 20000 = 0.
As to the first of these, we have A + B + G + D = 156000, A' + D' — B' — C = — 280 \]5,
and the equation thus is
156000 + 40 V-5 (- 280 V5) - 100000 = 0,
which is right.
For the second equation, if in the calculation we keep the radicals in the first
instance distinct, we have
5A" +15B" +10G" -10D" = - 18800 + 3000 V5 + (-1500 + 300 V5) VQ + (500 + 100 V5) V&,
- 150 V5 (G' + 2D') = {- 450 - 70 V5
+ (20 + 4 + Vo) VQ + (-10 + 2 V5) VQi} (~ 150 V5)
-1600 + 20000 =18400
(O' 2 + 2D' 2 ) = -~ {282000 + 416800 V5
+ (- 8800 - 4000 V5) VQ + (4400 - 2000 V5) VQi}-
Substituting in the equation, we ought to have
0 = -18800+ 3000 V5+ (-1500 + 300 V5) VQ + ( 500+ 100 V5) VQi
+ 52500 + 67500 V5 + (- 3000 - 3000 V5) VQ + (- 1500 + 1500 V5) V&
+ 18400
- 52100 - 70500 V5 + ( 5000 + 2200 V5) VQ + ( 2500 - 1100 V5) VQi,
that is,
0 = (500 - 500 V5) VQ + (1500 + 500 V5) VQi >
r-go
and
but
solul
R.
pp.