915
915]
ON THE PARTITIONS OF A POLYGON.
95
ïa Xs+ rls< l! >' + rm (I,) " + - - { x + oW' + îxî( i ‘)" + -
Ling,
aber
the
ides,
ition
r hich
r=
fc = l
2
3
4
5
6
7
8
9
10
11
12
13
3
1
4
1
2
5
1
5
5
6
1
9
21
14
7
1
14
56
84
42
8
1
20
120
300
330
132
9
1
27
225
825
1485
1287
429
10
1
35
385
1925
5005
7007
5005
1430
11
1
44
616
4004
14014
28028
32032
19448
4862
12
1
54
936
7644
34398
91728
148512
143208
75582
16796
13
1
65
1365
13650
76440
259896
556920
755820
629850
293930
58786
14
1
77
1925
23100
157080
659736
1790712
3197700
3730650
2735810
1144066
208012
15
1
90
2640
37400
302940
1534896
5116320
11511720
17587350
17978180
11767536
4457400
742900
r—
k = 2
3
4
5
6
7
8
9
10
11
12
13
4
1
5
2
4
6
3
14
14
7
4
32
72
48
8
5
60
225
330
165
9
6
100
550
1320
1430
572
10
7
154
1155
4004
7007
6006
2002
11
8
224
2184
10192
25480
. 34944
24052
7072
12
9
312
3822
22932
76440
148512
167076
100776
25194
13
10
420
6300
47040
199920
514080
813960
775200
396800
90440
14
11
550
9900
89760
476240
1534996
3197700
4263600
3517470
1634380
326876
15
12
704
14960
161568
1023264
4093056
10744272
18759840
18573816
15690048
6547520
1188640
•2
4. These functions, U and V, are particular values satisfying the equation
(r,
V 3 y +V 4 f + ...) = (U 1 + U 2 y + U z y 2 + U 4 f + ...y ;
that this is so will appear from the following general investigation.
5. Taking x, y as independent variables, denoting by X an arbitrary function
of x, and using accents to denote differentiations in regard to x, we require the
following identity: