915]
ON THE PARTITIONS OF A POLYGON.
103
6
4 diagonals, A =
r — 3.r — 2. r — l.r.r+l.r + 2.r + 3
5040
Q r—3.r — 2.r — l.r.r + 1 r — 3.r—2.r — 1 r — 3
-3 J2Ö + 3 g l-j-
r — 3.r — 4.r — 5 .r — 6
5040
(r 3 + 18r 2 + 65?") ;
where the calculation is
?" — 2 . r — 1. r. r + 1 ,r + 2. r + 3 = r 6 + 3r 6 — 5r 4 — 15r®+ 4r 2 + 12r
— 126. r — 2 . r — 1. r. r + 1 — 126r 4 + 252r 3 + 126r 2 — 252?"
+ 2520. r - 2. r - 1 + 2520r 2 - 7560r + 5040
- 5040 - 5040
r 6 + 3r 5 - 131r 4 + 237r 3 + 2650?" 2 - 7800r
= r — 4.r — 5.r — 6.r 3 + 18?" 2 + 65?".
Also
B =
r — 5.r — 4.?’ — 3 . r — 2.r — l.r.?" + l r — 5 .r — 4.r — 3.r — 2 .r — 1
5040
r — 3.r — 4.r — 5 . r — 6
5040
120
(?" — 1. r — 2. ?" + 7),
„ ?" — 7.?"—6.r — 5.?" — 4.?" — 3.?" — 2.?"—1
\J =
5040
r — 3.r — 4.r — 5.r — 6
5040
where the calculation is
(r — 1. ?" — 2. r — 7);
r.r+1 =?- 2 + r
- 42 - 42
r 2 + r — 42
= r — 6 .r + 7.
17. To explain the formation of these expressions, observe that :
One diagonal.—There must be on each side of the diagonal, or say in each of
the two “ intervals ” formed by the diagonal, two sides ; there remain ?" — 4 sides
which may be distributed at pleasure between the two intervals, and the number of
ways in which this can be done is
?" — 3
Two diagonals.—There must be on each side of the two diagonals, or say in
two of the four intervals formed by the diagonals, two sides; there remain r — 4
sides to be distributed between the same four intervals, and the number of ways in
which this can be done is
?• — 3.?" — 2.r — 1