NOTE ON THE LUNAR THEORY.
re
D = (1 — m)t, G = (l — §m 2 )£, (v =mt).
The verification for the first equation is
and the verification is thus completed.
[922
1 d 2 r
r dt 2
II
r_l IT.
II
TT+O
3I3
1
to 2 {—(cos2r— 2ri)} =
Const.
-1 +1
= 0
+ f ?n 2
— £m 2
= 0
4- 2to 4
- -W mi - & m *
— |f m 4
= 0
Cos 2D
4- 4 m 2
— J^-m 2 4- 3m 2
— fm 2
= 0
4- L4 m 3
— f£m 3 4- - 1 fm 3
= 0
4-^-TO 4
- MJt m 4 + 1|1 m 4
= 0
Cos 4D
4- 8?h 4
— f^-m 4 4-' à §-m i
33 qil ^
16 ni
= 0
Cos G
e
— 4e 3e
= 0
— few 2
4-3em 2 — f end
= 0
Cos (2D + G)
e fffm 2
e (- if m 2 ) e (\% 7 -m 2 )
e (— 3m 2 )
= 0
Cos (2 D-G)
em (ff)
em (- ff-) em (±g-)
= 0
em 2 (- &)
em 2 (— if-) em 2 (f 5 f-)
em 2 (3)
= 0.
The verification for the second equation is
2 dr dv
r dt' dt
d 2 v
+ dt? ~
4- f m 2 sin (2v — 2ri) =
Sin 2D
4- 4?n. 2
— if m 2
4- f m 2
= 0
4- 2£-m 3
— 5 s 6 -m 3
= 0
4- if^m 4
— J-jp-ra 4
= 0
Sin 4 D
4- ^-m 4
2 01 />•>-! 4
16 " L
+ |f m 4
= 0
Sin G
e. 2
4- e . - 2
= 0
e. 3m 2
4- e. 3m 2
= 0
Sin (2D +G) e. if^m 2
e. — ifm 2
e. 3m 2
= 0
Sin (2D —
Cr) e. J^m
e. - Jfm
= 0
e. ffm 2
e. — |f m 2
e. — 3?n 2
= 0