Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

NOTE ON THE LUNAR THEORY. 
re 
D = (1 — m)t, G = (l — §m 2 )£, (v =mt). 
The verification for the first equation is 
and the verification is thus completed. 
[922 
1 d 2 r 
r dt 2 
II 
r_l IT. 
II 
TT+O 
3I3 
1 
to 2 {—(cos2r— 2ri)} = 
Const. 
-1 +1 
= 0 
+ f ?n 2 
— £m 2 
= 0 
4- 2to 4 
- -W mi - & m * 
— |f m 4 
= 0 
Cos 2D 
4- 4 m 2 
— J^-m 2 4- 3m 2 
— fm 2 
= 0 
4- L4 m 3 
— f£m 3 4- - 1 fm 3 
= 0 
4-^-TO 4 
- MJt m 4 + 1|1 m 4 
= 0 
Cos 4D 
4- 8?h 4 
— f^-m 4 4-' à §-m i 
33 qil ^ 
16 ni 
= 0 
Cos G 
e 
— 4e 3e 
= 0 
— few 2 
4-3em 2 — f end 
= 0 
Cos (2D + G) 
e fffm 2 
e (- if m 2 ) e (\% 7 -m 2 ) 
e (— 3m 2 ) 
= 0 
Cos (2 D-G) 
em (ff) 
em (- ff-) em (±g-) 
= 0 
em 2 (- &) 
em 2 (— if-) em 2 (f 5 f-) 
em 2 (3) 
= 0. 
The verification for the second equation is 
2 dr dv 
r dt' dt 
d 2 v 
+ dt? ~ 
4- f m 2 sin (2v — 2ri) = 
Sin 2D 
4- 4?n. 2 
— if m 2 
4- f m 2 
= 0 
4- 2£-m 3 
— 5 s 6 -m 3 
= 0 
4- if^m 4 
— J-jp-ra 4 
= 0 
Sin 4 D 
4- ^-m 4 
2 01 />•>-! 4 
16 " L 
+ |f m 4 
= 0 
Sin G 
e. 2 
4- e . - 2 
= 0 
e. 3m 2 
4- e. 3m 2 
= 0 
Sin (2D +G) e. if^m 2 
e. — ifm 2 
e. 3m 2 
= 0 
Sin (2D — 
Cr) e. J^m 
e. - Jfm 
= 0 
e. ffm 2 
e. — |f m 2 
e. — 3?n 2 
= 0
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.