214
ON WARINGS FORMULA.
[925
+ &C.,
coefficient of b m ~ 6 we have all the combinations of c, d, e, .(or say all the
non-unitary combinations) of the weight 9, and where the numerical coefficient of
b m ~ 6 C G d d e e ... (c + d + e + ... = 6),
is
= (->
,o+e+g+..
m.m — (9 — 8 + 1). m — (9 — 8 + 2) ... m — (9 — 1)
lie. lid. lie ...
Thus for the term b m ~ s c 2 e 1 , 9 = 8 ; c, d, e = 2, 4, 1 respectively (the other exponents
each vanishing), and the coefficient is
. .m.m — 6.m — 7 . a n
(-) 3 TIT! ’
as above ; and so in other cases.
For the MacMahon form
1 + bx + + ... =(1 — ax)(l - fix)...,
or say
y n ^yn- 1 + JLyn 2 + ...=(y-a)(y-fi)
c d
we must for b, c, d, write b, -—w, ..—k , ... respectively : we thus have
JL . Z ±.¿1.0
(~) m • s m = 6*
1.2
+ m 1.2.3
b m ~ 2
b m ~ 3
m
1.2.3.4
or say
+ \m . m — 3
+ &c.,
(_)m n ( m - l) S m = II (m — 1)
— II m
+ Ilm
— Ilm
+ Ilm
1.2 J )
1.2
d
1.2.3
e
1.2.3
.4
m — 3 /
b m ~ 4
bm—2
fyn-s
fom—4