308
ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS.
[932
deg. 5,
deg. 6,
class F,
b 5 G.F. =
= îc° -5,
EF,
bc i
of — 4.5,
DF,
b 2 c 3
æ 8 - 3.5,
CF,
o 3
to
x 7 -2.5,
DEF,
bed 3
x 12 — 3.4.5,
GEF,
bc 2 d 2
x 11 — 2.4.5,
CDF,
b 2 cd 2
« 10 - 2.3.5,
GDEF,
bede 2
a; 14 — 2.3.4.5
'ght terms
G. F.=
x 5 2.3.4.5,
before.
class G,
¥ G. F. =
x 6 — 6,
FG,
be 5
x n — 5.6,
EG,
6 2 c 4
¿c 10 — 4.6,
EG,
b 3 c 3
x 3 -3.6,
CG,
¥c 2
a? -2.6,
EFG,
bed 4
¿c 15 — 4.5.6,
DFG,
bc 2 d 3
x li - 3.5.6,
CFG,
bc 3 d 2
x 13 — 2.5.6,
DEG,
b 2 cd 3
æ 13 — 3.4.6,
CEG,
b 2 c 2 d 2
æ 12 — 2.4.6,
CDG,
b 3 cd 2
x 11 - 2.3.6,
DEFG,
bede 3
£c 18 -f- 3.4.5.6,
CEFG,
bcd 2 e 2
i» 17 -i- 2.4.5.6,
CDFG,
bc 2 de 2
a; 16 — 2.3.5.6,
CDEG,
b 2 cde 2
x 15 - 2.3.4.6,
CDEFG,
bedef 2
a ,2 ° — 2.3.4.5.
and for the sum of the sixteen terms
G.F. = x 3 + 2.3.4.5.6,
which may be verified as before.
Reducible Seminvariants—Perpétuants. Art. Nos. 60 to 64,
60. Seminvariants of the degrees 2 and 3 are irreducible—or say they are
perpétuants. Hence by what precedes, as regards perpétuants
for degree 2, G. F. = a? — 2 ;
for degree 3, G. F. = x 3 — 2.3.
For the degree 4 (if as before b, c, d denote discrete letters), then the finals are
b 4 , be 3 , b 2 c 2 and bed 2 . For a final b 4 —b 2 .b 2 or b 2 c 2 = b 2 .c 2 , we have evidently a product
of two quadric seminvariants ending in b 2 and b 2 , or in b 2 and c 2 , with the same
final term as the quartic seminvariant ; so that, considering the quartic seminvariants