Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

308 
ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. 
[932 
deg. 5, 
deg. 6, 
class F, 
b 5 G.F. = 
= îc° -5, 
EF, 
bc i 
of — 4.5, 
DF, 
b 2 c 3 
æ 8 - 3.5, 
CF, 
o 3 
to 
x 7 -2.5, 
DEF, 
bed 3 
x 12 — 3.4.5, 
GEF, 
bc 2 d 2 
x 11 — 2.4.5, 
CDF, 
b 2 cd 2 
« 10 - 2.3.5, 
GDEF, 
bede 2 
a; 14 — 2.3.4.5 
'ght terms 
G. F.= 
x 5 2.3.4.5, 
before. 
class G, 
¥ G. F. = 
x 6 — 6, 
FG, 
be 5 
x n — 5.6, 
EG, 
6 2 c 4 
¿c 10 — 4.6, 
EG, 
b 3 c 3 
x 3 -3.6, 
CG, 
¥c 2 
a? -2.6, 
EFG, 
bed 4 
¿c 15 — 4.5.6, 
DFG, 
bc 2 d 3 
x li - 3.5.6, 
CFG, 
bc 3 d 2 
x 13 — 2.5.6, 
DEG, 
b 2 cd 3 
æ 13 — 3.4.6, 
CEG, 
b 2 c 2 d 2 
æ 12 — 2.4.6, 
CDG, 
b 3 cd 2 
x 11 - 2.3.6, 
DEFG, 
bede 3 
£c 18 -f- 3.4.5.6, 
CEFG, 
bcd 2 e 2 
i» 17 -i- 2.4.5.6, 
CDFG, 
bc 2 de 2 
a; 16 — 2.3.5.6, 
CDEG, 
b 2 cde 2 
x 15 - 2.3.4.6, 
CDEFG, 
bedef 2 
a ,2 ° — 2.3.4.5. 
and for the sum of the sixteen terms 
G.F. = x 3 + 2.3.4.5.6, 
which may be verified as before. 
Reducible Seminvariants—Perpétuants. Art. Nos. 60 to 64, 
60. Seminvariants of the degrees 2 and 3 are irreducible—or say they are 
perpétuants. Hence by what precedes, as regards perpétuants 
for degree 2, G. F. = a? — 2 ; 
for degree 3, G. F. = x 3 — 2.3. 
For the degree 4 (if as before b, c, d denote discrete letters), then the finals are 
b 4 , be 3 , b 2 c 2 and bed 2 . For a final b 4 —b 2 .b 2 or b 2 c 2 = b 2 .c 2 , we have evidently a product 
of two quadric seminvariants ending in b 2 and b 2 , or in b 2 and c 2 , with the same 
final term as the quartic seminvariant ; so that, considering the quartic seminvariants
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.