Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

364 
ON SEMINVARI ANTS. 
364 ON SEMIN V ARI ANTS. [942 
show that df— b 2 d~ is not obtainable by mere derivation from the covariants of degree 
3 of the quartic. 
The quintic and its covariants up to the degree 3 are 
¿=( 
1 
5b 
10 c 
10 d 
5e 
f 
(1, b, c, d, e, f\x, yf; 
e + 1 
/ -1 
bf+l 
bd - 4 
CO 
1 
ce — 4 
c 2 + 3 
cd + 2 
cP + 3 
y)\ 
(e -c 2 , f- cd, bf- d 2 7[x, yf; 
C = (c - b 2 , d — bc, e — c 2 , f— cd, bf— cl 2 , cf— de, df— e 2 ]fx, yf, 
D={ce- c 3 , cf— c 2 d, df— cd 2 , bdf — d 3 \x, y) 3 , 
E = (/— be 2 , bf — c 3 , cf— c 2 d, df — cd 2 , ef— d 3 , f 2 - d 2 e\x, yf, 
F = (d — b 3 , e — b 2 c, f — be 2 , bf — c 3 , cf — c 2 d, df — cd 2 , 
ef— d 3 , f 2 — d 2 e, bf 2 — de 2 , cf 2 — e 3 fx, yf 
Hence all the covariants of the degree 3 are A 3 , AB, AG, D, E, F, where 
AB = (e —c 2 , f—bc 2 , bf—c 3 , cf—c 2 d, bcf-cd 2 , bdf—d 3 , bef - d 2 e, bf 2 — d 2 f\x, yf 
AG = (c- b 2 , d - be, y) n ; 
and the derivatives are 
(A, A 3 f , (A, A 3 ) , &c. weights of leading coefficients are 0, 1, 2, 3, 4, 5 
4, 5, 6, 7, 8, 9 
2, 8, 4, 5, 6, 7 
6, 7, 8, 9 
5, 6, 7, 8, 9, 10 
3, 4, 5, 6, 7, 8.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.