Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

402 
ON RECIPROCANTS AND DIFFERENTIAL INVARIANTS. 
[943 
For the general proof, writing for a moment 
G 0 = fiA 0 , G x = (fi + v) A 1) C 2 = (/i + 2v) A 2 , &c., 
and similarly 
C' = fi'A 0 ', C' = {il' + v')A', Gi = (// + 2v')A', &c., 
where the accented symbols refer to the values v ; m', n), we have 
[O', v ; to', n').(>, to, n)], 
G 0 'da n , * 
Goda n 
- Goda n 
* O'd^, 
+ Gi'da n , +1 
+ G 1 da n+l 
+ Gida n+ 1 
+ G 2 d cln , +2 
+ G3a n+ 2 
+ oy n+2 
+ G A Ctn' -\-2 
4" Gn‘ ^Cln+n' 
b GrAan’-if-n 
"h ^n'+i *b G n +\ ^in'+11+1 5 
or observing that in the series G 0 , C lf G 2) ..., the first term that contains a n r is G n ', 
and the like as regards the series G,', (7/, C 2 , this is 
= {(Co'da n ,) G n > 
+ {(Co'd an , + G'd an , +i )C n ' +1 
+ {(C 0 'da n , + Ci'da n , +1 + G 2 'da n ’ +2 ) G n ’+2 
— (G 0 da n ) G n } da n+n , 
— (G 0 da n + G^) G n+1 } d an+n , +1 
~ (G 0 da n + Gida n+1 + G 2 da n+2 ) G' n+2 } da n+n , +2 
and it is thus of the form 
Ofd^ + cn 
a n+n'+1 
+ C"d a , 
'n-\-n'+2 
+ &C., 
i.e. the value of is = n + n. 
I confine myself to the comparison of the first and second coefficients: substituting 
for the C’s their expressions in terms of the J/s, we ought to have 
/j,'A 0 'da n , O + n'v) A n - - fxA 0 d an (/¿' + nv) A n ' = ¡i x A 0 ", 
(,¿Ao'dan’ + 0'+ ») A'da n ' +1 ) {/* + O' + !) A A n ’+1 
- (/xA 0 da n + (/a + v) A x da n+1 ) {A + (n + 1) v'} A' n+ 1 = (X + v 1 ) A 
Now assuming m 1 = to' + to — 1, and attending to the values 
11 1 
-a-0 — — u 0 , -¿1 0 — , u 0 , -0-0 — , , 
to . to . to + to —1 
A 1 = a 0 m ~ 1 a 1 , 
Ao = a 0 m ~ 1 a 2 + ^a 0 m ~ 2 a 1 2 , 
m'+m—i
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.