32
A TRANSFORMATION IN ELLIPTIC FUNCTIONS.
[896
to in my “ Note sur les Covariants, &c.,” Crelle, t. L. (1855), pp. 285—287, [135],
and is given with a demonstration in my paper “ Sur quelques fornmies pour la trans
formation des integrates elliptiques,” Crelle, t. lv. (1858), pp. 15—24, [235], see No. iv.;
viz. from the identical relation JU 3 — IU°H + 4<H 3 = — <E> 2 , which connects the covariants
of a quartic function, it at once follows that if
U = (cl, b, c, d, e\x, l) 4 ,
and H is the Hessian hereof,
H = (ac — b 2 , (ad —be), ae + 2bd — Sc 2 , 2 (be — cd), ce — d 2 \x, l) 4 ;
then writing
we have
dz _ 2 dx
V(- 4z 3 + zl — J) \/{(a, b, c, d, e'^x, l) 4 ] ’
which is the transformation in question.