Full text: Zur Reduction elliptischer Integrale in reeller Form ([Hauptwerk])

35] 
Zur Reduction elliptischer Integrale. 
91 
18. 
Setzt man xp = , </ = to, t/ tí = /, so folgt analog 
/'<jp r'/- ri n H 71 H 
/ + / = / + / “ / 
•'ii» «•'ti) № '' •/ w 
i 71 (iff) 
Jff 
/,' COS/ sinoj = sin/ COS tdz/t/ — COS f/z/td 
/.'sini/) cos/ = coswz/t/ — COSÌ/) sin/z/to 
/.'così/) sin id = siili/) costo///— cos/z/w 
/'cose/) sin/ = COSÍO z// — sin (jP cos/z/to 
/'sin/costo = COS/sillidz/t/ 4-COS(/z// 
x'sint/) costo == COS / z/</4-COS Í/SÌ 11 tdz// 
/' I —x 4 sin </) sin/sinto) = z/t/)z//z/tO 
* X 4 cost/) cos/ sinto = x'z/to — z/f/'z// 
X 4 sin Í/ COS/ COS to = z// z/ to — X f z/1/1 
X 4 cost/) sin/costo = z/í/iz/fO — x'z// 
cost/) COS/ = x'sint/) sin/z/to — sili t/z/t/z// 
cos/costo = sint/zZ/z/w— x 'sin/sin to z/í/) 
cost/) costo = sin/z/t/)z/tO — x'sint/) sin to z// 
x' (sin t/ sin/ — sin to) = COS t/ 1 cos/z/to 
/'(sint/) — sin/ sinto) = cos/ costoz/f/ 
/'(sin/ — sillt/) sinto) = cost/ 1 COS to z// 
_ x 'x 'sin t/ sin/ — cost/) cos /z/t/z// _ sill/COS/z/f/ — sint/cost/)/z/ 
x.'x'-t- x 4 cos 4 t/ cos 2 / sint/ cos/z/t/ — cost/ sin/z// 
— cost/ COS/ 4- sint/ sin/z/f/ z// — cos 2 t/ cos 2 /-4- x'x' sin 2 t/ sin 2 / 
z/t/z//- x 4 sin f/ cos t/ si n / cos / x 'x 'sin t/ sin / 4- cos t/ cos /z/t/z// 
_ , sillt/ cos/z/t/ -f- cost/ sin/z// , sin 4 t/—sin 4 / 
X '/' 4- Z 2 COS 2 f/ cos 4 / sillt/ cos/z/f/ — cost/ sin/z/ / 
_ , cost/ sin/z/f/ 4- sint/cos/z// , sint/cost/z//4-sin/cos/z/t/ 
z/t/z// — x 4 sin f/ COS f/ sin/ cos/ z 'z 'sint/sin/ 4- COSt/COS/z/f/z// 
^ , X 4 sin f/cost/sin/COS/4-z/f/z// , sin t/cos/z//— cost/sin/z/f/ 
X X 4- X COS f/ cos / 
sin f/ COS/z/t/ — cost/ sin/z// 
, _ , cost/ COS/ 4- sillt/'sin/z/t/z// 
z/.f/z// — x 4 sint/ cost/ sin/ cos/ /.'/'sint/sin/4-cost/cos/..7t/z// 
I —X Sin f/ sin /
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.