Full text: Zur Reduction elliptischer Integrale in reeller Form ([Hauptwerk])

I 
43] Zur Keduction elliptischer Integrale. 99 
S y 0 y = $ 0 y- 4- 2m o y 4- % = 4>( - / y-- 4ly 4- & — A 
= 2i/o ■+■ 2ÜKy 0 ■+•= 2/. i — // '+ it(i — y 4 ; 
aBt(y 0 y) = v;/+2ü»; y +?»; = *^/+2^,+^ 
= (2U4- /" — -|-G)y i + 4(Ä' — \ G\y + ^.l 4- Ä — g-G 
= -- G (i — // 2 H- Ifi (i — if -+- — a (i -hy + y*) 
~ = t G y ~ !h!<t{ ' x “ ,r ° '~ 2 ^> [y ° y)lx ~ ,r °"~ 2U ‘ ,C( ' ,r f/ ~ y ° ] ' 
+ W[x 0 x)W{y 0 y) 
= {L 0 X- 4- 2 M 0 x 4- i\) [2 l (I - y) J 4- II (I - y*).J 
— 2 (¿Ja? 4 4- 2 ;¥,°£C 4- A T i°) (i — y) 4 
— 2 H [l (I - /“j 4- *- II (I 4- // 4- /) J (JC - X oj * 
Die Identität der beiden für 2 abgeleiteten Ausdrücke ist leicht zu 
verificireri. Uebrigens versteht sich von selbst, dass für den Fall 
51 > ($ das Vorzeichen des Radicals // umgekehrt werden muss. 
22. 
Die Werthe von x, y, | und tj anlangend ergeben die Formeln 
des Art. io 
■x-x, = 
(L 0 3C 0 4- M 0 ) [2l[l —y)' + n(i - y*]] — 2 [L° t x 0 4- M*)[l-y)- 4-f*g 0 l? 
2Lj(l — ?/) 2 4- 2/u(X(l — */*) +Ul{\ 4-1/4- j/ 2 )] — Z 0 [2A(i — y)*4- fl (l — y*)] 
2y 0 (l -y) ä -/o[2Ä(l -y) a 4-^(l -y')] 
(X 0 ®o4-il/o'[2^(i-y) 4 4-/i(i -y“)] - 2(Xja?4-ü/®)(l -y^-fl^r] 
I — ,y = 
= /* 
¿0* 4- 2 J/ 0 £C 4- iV 0 - (31 - A) (x -x o y-§^ 
2 (M-hl'- lCf) [x-x^r-h2 [L\x* 4- 2 M?X4-N?) - (31-A) (X 0 C?4-2i¥ 0 £C4-A 0 ) 
. 2g(qg-a?o) a 
X 0 £C 2 4- 2 M^X 4- N 0 — (21 — X) [x — £T 0 ) 4 4- £„£ 
oder nach leichter Keduction
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.