Full text: Zur Reduction elliptischer Integrale in reeller Form ([Hauptwerk])

Zweiter Abschnitt, 
Die Reduction der elliptischen Integrale auf die 
Thetafunctionen Jacobi's. 
33. 
In der Theorie der Thetafunctionen werden die Gleichungen 
bewiesen 
O- [h, q) = i — 2q cos 211 4- 2q' 1 cos4u — 2q' cos6u dt . . • 
. CD 
= (q) TI{ 1 — 2q lp ~ 1 cos211 4- q ip ~ i ) 
‘P = * ' 
1 9 2 5 
4/, (//-, q) — 2 q T sili 11 — 2q ‘ sin 3 u -+■ 2 q ' sin 5 // Zfl - - - 
1 530 
= 2(q) q ‘ sinw- TI( 1 — 2q' p cos 211 -h q ip 
4- 4 T 5 
,‘>4 H, q) = 2 q ’* cös u 4- 2 q A cos 3 w 4- 2 <7 4 cos 5 // 4- . . . 
1 °° 
= 2% l {q)q 1 cos » TT (1 + 2f p *cos 2 4- 7 4 p 
& 3 (u, q) = 1 4- 2 q cos 2 // -+- 2 q* cos 4 u 4- 2 r/’ cos 6 1/ -f- . . . 
QO 
= [q TI 1 4- 2 q lp ~ 1 cos 211 4- q ip _ " 
wo 
X. .7 
= TTi-Q^P) = U{- 
■n n(an + 1) 
Schreibt man analog zur Abkürzung 
x[q) = TI{i-(( lp ~ x ) , Xiiq - n[i + q lp ) , Xa ( l = TI (1 4- q' p ~ *) 
so erhiilt man
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.