S36
€>F INTEREST AND ANNCrTlES.
Thus, because PR n is — g, there will come out P
a l—
-^-„and R = -jLj "> &c. or by, exhibiting the same
equations-in logarithms (which is the most easy for prac
tice) we shall have
1°. Log. a — lag. P + n x lag. R.
2A Log. P. — log, a — n x log. R.
3 n . Log. R. = '°g- a - log - P -.
„ _ log- * — log. P
4 • iogTTl.
Which four theorems, or equations, serve for the four
cases in compound interest.
A x —— i
Again, since m is rz -—^ —, we shall have
r i°. Log. m = log. A + log. R* — l — log. R — 1.
; 2°. Log. A. = log. m — log. R” — l + log. R — I-
3°. u
_ log. wR — m f A — log. A
4\ R”
log. R
wR m
s~ + x — 1 -
To which the various questions relating to annuities
in arrear are referred.
I : -
- - 1 "ppi .
Moreover, seeing A x — is=v, we thence have
l
i°. Log. v = log. A f log. i
I
11«
log. R — i.
2°. Log. A = log. v -f log. R— i — log. j L.
R*
log. A — log. A + v — ?R
n —
log. R
4®. R ? *+ 1 - A + l x R’ 1 | A r ft
- ’ v - ff • - • ' v •