Full text: Abhandlungen aus der reinen Mathematik

Die Auflösung der Gleichungen. 
11 
enthalten. Setzt man zur Abkürzung: 
a' 
! V + 
C' +• 
• • = A’ , 
n 4- P 4- q + • • 
. — N 
a" - 
\-b” 4- 
C" +. 
•• = A" , 
e' 4- s" 4- £ r ”4 
• = E. 
a"' - 
1- b'" 4- 
c'" 4- • 
■ • = A'" 
> 
u. 
s. w., 
so wird das allgemeine Glied der Form 
{«'a : —} . {a"a4-6"ß4-c"y4—} . {a"'a 
den nummerischen Coefficienten 
6'"ß + c r "Y+‘*} 
(1.2.3... 
M' - 
-2)(A' 
-!)) £ 
v 
(1.2.3. 
..£' ) (1.2.3.. 
. (a' 
-1K ) £ ' 
(1.24 
i...(F 
-l)b' ) £ ' 
(1.2.3. 
.,(& —1 )c’ f' .. 
(1.2.3.. 
.(Ä"~ 
-2)(A" 
V 
(1.2.3. 
..s") (1.2.3.. 
,(a" 
-1 )a" f" 
' (1.2.3 
-1)6" ) £ " 
(1.2.3.. 
,.(c" -l)c" ) £ " .. 
(1.2.3.. 
.{A"'~ 
-2 ){A'" 
-1)) £ "' 
— V 
(1.2.3. 
..e'") (1.2.3.. 
.(ä’" 
—1 )a"'f 
"(1.2.3 
-1 )b"'f' 
'(1.2.3.. 
..(c'"—l)c"') £ "\. 
u. s. w. 
haben, und zwar wird dabei das obere Zeichen gelten, wenn N ■+ E gerade, 
das untere dagegen, wenn es ungerade ist. 
So ist z. B.: 
{« 3 ß 2 } 
1 . 2.3.4 
1.2. 
1 
3.1.2 
. 2 
1 1.2. 
1 
3.1.2 
, 9 
1 
2 
1 
. 2 
1 . 2 
.1.2 
1 
j 
. 1 
1 
. 2 
1 
. 1 
h 1.2 
.1.2 
1 
1 
. 2 
1 
1.2. 
3.1.2 
{3a+2ß} 
{3a} {ß} 2 
{2a+ß}{a}{ß} 
{a + 2ß} {a} 2 ■ 
{2a}{a + ß} {ß} 
{2a}{a}{2ß} 
1.2.3 
1.2.3 
1.2.3 
1 
.2.1.2 
1.2.1 
1 . 
2.3.1.2 
1.2.1 
1.2 
1.2.1 
1 
.2.1.2 
1 
1 
.2.1.2 
1 
1 . 2 
1 
1. 
2.1.2.3 
{3a+ ß}{ß} 
{2a 4- 2ß} {a} 
{3a}{2ß} 
{•2a + ß}{3! + ß} 
{a 4- 2ß} {2a} 
{2a} {a} {ß} 2 
{aH- ß} {a} 2 {ß} 
{ a } 3 {2ß}
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.