Full text: Abhandlungen I (1. Band)

rwr : as? - 
■ , .-. vf : „? 
48 ÜBER DIE ENTWICKLUNG DER MODULAR - FUNCTIONEN. 
Man hat 
(1-äV)(1-AV*) = 1 - 27f cos 2t,m + 7* 2r = (1 — A r ) 2 + 47t sin tjm* 
(1 + äV)(1 + äV 2 ) = 1 + 2Ä r cos 2r,w + h' r = (1 + 7* r ) 2 - 47t sin r ( w* 
l-/i r = Ä f (Ä" f -Ä f ) = -2A*@in^& = -2A*@innjZ' 
1 + 7f = (A~* + A*) = 27i* Go§ £i> = 27t 2 Go§ rr^, 
also 
(1-AV)(1-*V) - (l-'0‘(l+ 
(1+ &',>)(!-ro = (i + *T(i- si^r)- 
Hiernach lassen sich die Gleichungen (1.), wenn man zugleich berück 
sichtigt, dass für u — 0 = 1, Al [u\ = 1, Al(u) 3 = 1, Al (u) = 1 ist, und 
daher 
\Jk = 2GrJi*(l — 7t) 2 (1 — h*y •••(! — 7t r ) 2 • • • 
(i + Ä*)*(i + 7* 4 )*-..(i -i-ä*-;* 
\/~ = Gh 1 
y/i = G(1 + Ä)’(l + A S )’ (1 + h' r+ 'Y 
sein muss, also darstellen: 
i«*M 1 . j sii 
* AK«), = -sm^.Pjl+ gj— 
sill 7jM 2 
©in (2a + 2) t ( 2T 2 
(2.) 
tum . . , . ( 
e Al (m) 2 = cos r t u. P 1 
e Al (w) 8 = P11 
sin r t u 
ßo§(2a+2)r,A' 2 
sin r t U 2 1 
(« = 0, 1, 2, • • • + oo) 
\ 
(5o§ (2a + 1) r t 2T 2 j 
A W N T. ( . Sm TM* ) 
e (w) — P | 1+ @in(2a + l)7jA ,s !* 
Setzt man ui für w, k' für k, so erhält man vermittelst der Formeln (4.) 
des § 4 :
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.