05
Der Hebel.
Um dieses einzusehen sey ACB der doppelarmige He-
bel (Pix. 34.) AC^7 2BC, und Q—sP. Man denke in 1) 1 ®‘
in der Entfernung CD = AD = CB ein Gewicht R = 2P ^4*
abwärts, und S = 2P aufwärts angebracht, so ist
--wischen P und S wegen §. 114. und auch zwischen R
e'nd Q vermöge §. 113 zugleich ein Gleichgewicht, das ist
der Hebel v rbleibet bey diesen vier Gewichten P, 8, R, Q
gänzlich in Ruhe. Nun sind auch 8 und R im Gleichgewich
te, ihre Wirkungen heben einander gänzlich auf; deßwegen
kann man sie wegnehmen ohne das Gleichgewicht zu stören;
und es verbleibt am doppelarmigen Hebel Q = aP in der
Entfernung BC, mit P in der Entfernung AC = 2BC im
G.eichgewichte.
I. Es ist leicht einzusehen , daß auch bey dem eben er
wiesenen, und überhaupt bey jedem Gleichgewichte am dop-
pelarmigen Hebel die Unterlage nicht mehr und nicht we
niger zu leiden habe, als einen Druck, welcher der Sum
me beyder Gewichte gleich ist, weil der Hebel selbst ohne
Schwere betrachtet wird. Hat hingegen der Hebel auch ein
Gewicht, so leidet beym Zustande des Gleichgewichtes am
-oppelarmigen Hebel die Unterlage einen Druck, der so groß
ist, als die Summe beyder Gewichte mehr dem Gewichte
des Hebels.
II. Nun läßt sich ferner, so wie §.114 erweisen,
daß am einarmigen Hebel auch ein dreyfaches Gewicht mit
einem einfachen im Gleichgewichte seyn könnte, wenn die
Entfernung des letzteren dreymahl so groß ist, als die Ent
fernung des ersteren. Darauf laßt sich eben so wie im §. 1x5.
dieses auch vom doppelarmigen Hebel darthun, so kann man
immer nach der Ordnung um eine Einheit weiter gehen,
welches aber auf folgende Art kürzer und leichter geschehen
kann.
§. 116.
wenn ein paar ungleiche Gewichte am Hebel der
einen Art -n gewissen Entfernungen vom Ruhepuncte
im