'.-3% “ff*
Polynomischer Satz. . 305
Polynomischer Satz.
Transport
a6c</(e 4 + .. A 4 )-|-rt6ce(f t +0 4 +Ä 4 )+ a & c /‘(0 4 + ^ 4 ) + abcgh* . .
(a*bde +.. ab de*) (f+ ^ + h) + {a*bdf-\-.. abdf*) {g + h)
-\-{a*bdg-\-..abdg*)h
(a 3 bde +.. abde 3 ) (/^d- <? 2 + A 2 ) + (a 3 bdf + abdf 3 ) (g 2 -f A 2 )
+ (a 3 bdg + .. abdg 3 ) h 2
(■a 2 bde +.. abde 2 ) (f 3 +g 3 + A 3 ) + (a 2 bdf-\-.. abdf 2 )(g 3 + h 3 )
-f- {a 2 bdg +. .abdg 2 ) h 3
abde (f* +# 4 + A 4 ) J rabdf{g* + A 4 ) + abdgh 4
(a*bef +.. abef*) (g + h) + (a*beg +.. abeg*) h
(a 3 bef-{-.. abef 3 ) (^ 2 + Ä 2 ) + (a 3 beg +.. abeg 3 ) h 2
(a 2 bef-f- ..abef 2 ) (g 3 -\-h 3 ) -\-(a 2 beg -f ..abeg 2 ) h 3
abef(g*-\-h*)-\-abegh 4
(a*bfg-\-..abfg*)h
(a 3 bfg-\-..abfg 3 )h 2
(a 2 bfg+..abfg 2 )h 3
abfgh*
(a*cde +.. aede*) (f-\- g + h) + (a*cdf +.. acdf * (g + h)
+ (a*cdg + • • acdg*) h
(a 3 cde +.. aede 3 ) (f 2 +g 2 + h 2 ) + {a 3 cdf +.. acdf 3 ) (g 2 -f h 2 )
+(a 2 cdg +.. acdg 3 ) h 2
(a 2 cde +.. acde 2 ) (f 3 +g 3 -\-h 3 ) + (a 2 cdf +.. acdf 2 ) (7/ 3 + h 3 )
■\-{a 2 cdg-\-. .acdg 2 )h 3
aede (f 4 +<7 4 +A 4 ) -f- acdf (g* -f- h*) + acdgh 4
(a*cef-\-.. acef*) (g -f h) + (a*ceg +.. aceg*) h
(ia 3 cef +.. acef 3 ) (g 2 + h 2 ) -f (a 3 ceg +.. aceg 3 ) h 2
(a 2 cef-\-.. acef 2 ) (g 3 + h 3 ) + (a 2 ceg + • • aceg 2 ) h 3
acef (g 4 + h*) + acegh 4
acfgh*
(a*def -f.. adef*) (g + h) -f (a*deg +.. adeg*) h
{a 3 def-f. .adef 3 )(g 2 -\-h 2 )-\-(a 3 deg-\-..adeg 3 )h 2
(a 2 def-.. adef 2 ) (g 3 -\-h 3 ) -f (a 2 deg-\-\. adeg 2 ) h 3
adef (g* + h*)-\- adegh*
adfgh 4
(a*efg-\-..aefg*)h
(a 3 efg+..aefg 3 )h 2
(a 2 efg + ..aefg 2 )h 3
aefgh*
VI. Diejenigen Glieder, welche aus sechs E bestehen.
Erklärung. Der erste Factor jedes Gliedes hat folgenden Character.
a 3 bcde, ab 3 cde, abc 3 de, abcd 3 e, abcde 3
a 2 b 2 ade, a 2 bc 2 de, a 2 bcd 2 e, a 2 bcde 2
ab 2 c 2 de, ab 2 cd 2 e, ab 2 cde 2
abc 2 d 2 e, abc 2 de 2
abcd 2 e 2
(a 3 bcde+.. abcde 3 ) hat 15 Glieder
{a 2 bcde +.. abcde 2 ) „5 „
Anzahl
der Glieder
Latus
1950
1157
3107
IV.
20