Full text: Sonderdrucke, Sammelband

400 
L. Kiepert. 
i 24ß(2a+l)£ a + 24[-3G 1 +4«(a-l)e; l ]G i «_i 
-f- [— 144 ei Cr, -|-24 (w-j- 2« 2 — 5a)ez 2 ~l-(n 2 -j-4an — 12 « 2 — 7n 
4-30« — 18)# 2 ] Cr a __ 2 
4-[—72 er (tj 4-2 (w 2 4-4« 12« 2 — 5n-f48« —54)^ 2 ^ 
4- 3 (n 2 — 4«w-f-4« 2 4- 10w—16« 4~ 12) g%\ Cr a _ 3 
4- (w — 2 « -f 6) {[(w -f- 6 « — 15) g 2 ex 2 4- 6 (n — 2 « 4- 5) # 3 e Ä ] (x«_ 4 
4“ 3(w — 2 a-f- 8)^3 ex 1 G a -b | 
+ 8 n [(D (G a -i) 4- 2*i D (Cr a _ 2 ) 4- e^ 2 D (G a _ 3 )] - 0. 
Hieraus findet man für « == 2, 3, 4 ; . . . 
(72) 
240 £ 2 — 72 G x 2 4- 48 exG x -f- 8 n D (G,) 
4-(n-2)[24e, 2 4-(^4-3)^ 2 ] = 0, 
504G 3 — 72 Cr, 6? 2 4-96e^ 2 4-8nB(G 2 ) 
-\-{n — 4[24ei 2 G,4-(w4-9)# 2 G,+3(w — 2)^ 3 ] = 0, 
864Cr, — 72 Cr, (? 3 4-144e^ 3 4- 8nD(G 3 ) 
-\-{n —6)[24e^ 2 G 2 4-(»4-15)<? 2 G 2 4-3(n — 4)<7 3 Cr,] = 0, 
Man kann aber auch beide Fälle vereinigen, indem man 
(73) S 2 = p{s n ~ 4 — B x s n ~ 2 4- JB 2 s n ~ 3 + Bn-i) 
setzt, wobei also für n = 2 m -f- 1 
B X = 2G X , B 2 = 2G 2 + G 2 , B 3 = 2G 3 + 2G X G 2 , ... 
wird, während für n — 2m 2 
B x = 2 G x 4- ft, B 2 = 2G 2 4- G 2 4- 2exG x , 
B 3 — 2G 3 -j~ 2 Cr, G 2 4- ei(2 G 2 -\-G x 2 ),.. . 
ist. Dadurch gehen die Gleichungen (66), (67) und ebenso die Glei 
chungen (70), (72) über in 
(74) 
3-Z?i + 2wD(lg /*) = 0, 
120 i? 2 — 48 B x 2 4- 4 n D {B,) 4- {n - 1) (n -(- 6) g 2 = 0, 
252 B 3 — 84 B x B 2 -f-12B x 3 -j-4nI) (B 2 ) -j-(n 2 -j-7 n — 21)g 2 B x 
+ 3(n 2 -4n-j-3)g 3 = 0, 
432B 4 -~108B x B 3 — 48B 2 2 + 60B x 2 B 2 -12B x 4 -l-4nB (B 3 ) 
-j-(n 2 + 9n — 48)g 2 B 2 -{-3g 2 B l 2 + 3(n 2 — 6n-l-9)g 3 B 1 =0, 
Noch einfacher werden diese Differentialgleichungen, wenn man 
die Grössen Cr,, Cr 2 , . . .; B,, B 21 . . ., die ja in dem oben angegebenen
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.