Full text: Sonderdrucke, Sammelband

1 iir-rr-mn 
102 L. Kiepert. 
L,(7)* = (-/6 ■-i) = i 0^.(1-+ /2)+¿(1 -3/2)], 
(92 a) ' 1 _ _ ' _ 
! ¿6(7) 2 - p- 8 (- /6+i) = 1 [A(1+/2) -i(1. - 3 /2)]. 
, I 
Die X- Gleichung für n = 7 muss daher durch den Factor 
(£ 2 - Z, 2 ) (Z 2 - W) = L>- /3(1 + /2) Z 2 + 7 
theilbar sein. Bringt man also die Gleichung (56) auf die Form 
(93) [X 4 — /3(1 + /2) X 2 + 7] [X 12 + /3(1 + /2>X 10 
+ (16 + 6/2) X 8 + /3(21 + 15/2) X 6 +(104 + 62/2) X 4 
+ /3 (89 + 65/2) X 2 — l] 
+ 24 [9/ 3 — /3 (26 + 19/2)] X 2 = 0, 
so findet man daraus 
J9n = 09 + 18/5) /6 = (1 + A) 2 (5 + /2) /6, 
l JY 1 = (1 + A) 2 (5 + 2/2) 5 . 
Der Werth von r, welcher der anderen Classe entspricht, nämlich 
r = 1 /6 = Y gielit 
(95) y, 3 = (1 - /I) 2 (5 — 2/2) 3 , 9y, = (1 - /2? (5 - /2)/6. 
VII. d = — 7; einzige Classe (1,0, 7). 
(96) t 2 + 7 = 0, t = (i = ij/ 7, it = 7, 
(97) X 0 (7) = f, X 0 (7) 2 = — /7 nach Gl. (47), 
(98) 8/3 = 3-19/7, 12/2 = 3-5-17 nach Gl. (56). 
VIII. iZ = — 8; zwei Classen (1, 0, 8) und (3,1, 3). 
Der ersten Classe entsprechen die Gleichungen 
(99) T 2 + 8 = 0, t = [i = 2ij/2, tt = 8. 
X, (9) = p 11 / — 1 + 2*/2 = p 11 (1 +*/2) nach Gl. (48), 
X s (9). = p- 1 /l + 2» /2 = p- 1 (/2 + i) nach Gl. (49), 
(100) 
oder 
(100a) X/9) 3 = p 9 (—5 + ^/2), X 8 (9) 3 = p~ 9 (—5-¿/2). 
Nun wird nach Gleichung (59) 
Z 1 (3)« + 27~[Z l (9)» + 3]> 
= + (1 +*y2) 3 (1 + /2) 3 [(-3 + 2/2) - ¿(1+/2)] 3 , 
I
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.