19
whereto? dy Q , dc, dXo, dY 0 , dZ 0 , doo, dcp and dx are corrections to the corres
ponding approximate values. Putting
dx = x—Xq—c
(X-X 0 )
(Z-Z 0 )
, (Y-Y 0 )
dy = y-y^-c
5.5.3
5.5.4
dx and dy are then defined as measured value minus given value, the given
value being computed from the co-ordinates of the test object and the approxi
mate orientation elements. Adding linear terms from expressions 5.2.4, 5.2.5,
5.3.1, 5.3.2 and 5.4.10 we obtain the following differential formulas:
dx — dx o +
A-A 0
Z-Z 0
c
dc ——y yr dXo +
Z — Z o
X — A 0
(Z - Z 0 ) 2
c dZo —
(A - A 0 ) (Y - Y 0 ) , ,
— —- c a to -r
(Z — Z 0 j“
(X - Xo) 2 l
(z - z 0 y J
c dcp +
Y — Y 0 A — A 0
+ Ty 7y- c dx + — — c (<2 3 r 2 + fl 5 r 4 +....) +
z — z 0 z — z 0
+ p { (r 2 + 2 (x — x 0 ) 2 ) + 2/?2 (x — x 0 ) (j — J 0 )
5.5.5
dy = dyo +
1 +
Y — Y(\
Z-Zn
dc
Y y
dY 0 + — c dZ„
(y-
- y») 2 l
(z-
- ZoH
c dco +
Z — Z 0 (Z-Z,)*
(X-X„) (y-y 0 )
(Z - Z*)>
A-Ao
Z-Z 0
c dx +
c (ayr 2 + +....) +
+ 2pi {x — *0) (y — Jo) + p2 (r 2 + 2 (j—Jo) 2 ) +
+ (j — jo) dm + (x — x 0 ) dp 5.5.6
where a 3 , a.-,, a 7 , ai, p\, p 2 , dm, dp are parameters to be determined together
with the corrections to the orientation elements mentioned above. In this way
it is possible to introduce more parameters in the mathematical model in order
to determine regular errors and reduce the remaining irregular errors.
If the angles eo, cp and * are too large to allow higher order terms to be neg
lected, the expressions 5.1.1 and 5.1.2 can be linearized by numerical differen
tiation. The partial differential of F (k) with respect to the variable k is com
puted as