Ax 0 (g) AXq
7.1.4
Ay c
AY,
(Z)
and for the principal distance
7.1.5
Ac
(Z)
AZo
7.1.6
If the photography is oblique, we can determine the interior orientation,
if we know one element of the exterior orientation, because in that case we
obtain only one linear dependence among the coefficients of the unknowns. It
may be assumed that oo = 0 and x = 0.
Differentiation of 5.1.1 and 5.1.2 gives
7
dx = dxo + +
f — cos (po T sin epo 1
+ \ 77 — 777 [ c dX o '
N
N 2
+ ^ -sin^ + rco^ç) +
N
N 2
\ (Y-Y 0 ) sin cp 0 r (Y-Y 0 ) cos <p 0 \ ,
+ i 77 — 777 r c dœ -h
N
N 2
7 2 1 y-y 0
+ r + ~w \ c d<p + — N— c dx
7.1.7
dy = dy 0 +
y-y c
N
dc +
(Y—Yq) cos 9?o
N 2
c dZr
(Y—y 0 j sin n ¿_
jy2 ^ dX o jy c d Y o
(Z-Z 0 ) , ry-n; 2 cos^o 1 , .
H 777 ( C dco -j-
N
N 2
k (Y-Y 0 )7 , T f
+ № C dep- y C dx
7.1.8
33