Full text: Actes du onzième Congrès International de Photogrammétrie (fascicule 6)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
AFrequency Function ef the Prior - 1000 Kronor 
Probability for a certain c'. 
€ 
04 ; 
7 
03 e 
5 
ï Cost 
0.2 of 
3 Rejecting 
Lot 2 
t 
o x 
eric UU UI Mc peNS I ap EIE T 
True (bul unknown) Standard Error of the Instrument True (but unknown) Standard Errer of the Instrument 
Fig.1. Prior Probabilities. Fig.2. Cost Function. 
1641000 Kronor 
144 
12 
104 
84 = 
6 
A 
3 
2 Expected Cost of Sampling —— 
i$ 10 20 30 40 so 60 70 80 90 100 110 120 130 140 150 160 170 180 
  
Number of Measurements (ie. six plus the number of df.) 
Fig.3. Optimum Number of Observations. 
     
   
   
   
    
   
    
    
      
  
   
  
  
  
Frequency 
Frequency Function ef the ^ — ---Probility Difference. 1000 
Prior Estimate of the 04 een =Weighted Expected Cost. ve 
Posterior Frequency f T 
Function of the : ky . 
P iiti 0.3 i4 6 
robabilities of a Pd oy 005 
certain 6€ when a : ll | À : 5 
certain Mean is : Fl | X 
; 0,2 I A 4 
Calculated with 15 : 1 | \ 
Degrees of Freedom. PT : \ : 3 
0.3 Lo. ; ; | Le: N Sod 
02 ud. y. vid. 
Fa À ; fl 
01 i 373.5 Ni 
Top ; > = 7 Jill \ 
-1 Mean +1 +2 +3 um 0 1 2 3 4 5 6 7 8pm 
The True (but unknown) Standard Error of the Instrument 
Fig. 4. Prior Posterior Probabilities. Fig.5. Example from the Computation 
Example for 15df, Procedure. 15d.f. Mean of d’= 4.5ym. 
151 
 
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.