de certains essais sur la précision possible à obtenir et propose une forme, nommée la triangulation
radiale mécanique de précision (TRMP).
Les résultats obtenus montrent que la TRMP, correctement appliquée, peut donner une précision
horizontale suffisante pour la majorité des levers sauf ceux à grande échelle pour les plans
cadastrais etc.
La TRM ne donne pas de z-coordonnées, mais d’ordinaire l’exigence de précision dans la carte
définitive demande des nivellements terrestres des points de contrôle pour presque tous les modèles
stéréoscopiques.
L’auteur a construit un appareil pour la TRMP et un pour la TRM simple. Les appareils
seront montrés en connexion avec le VIII: ième Congrès de Photogrammétrie.
M. van der Weele (Pays Bas) demande si M. Fagerholm pourrait donner une
indication de la précision relative qu’on peut attendre de l’application de sa
méthode. M. Fagerholm répond que cette précision est de l’ordre de 0,1 mm.
Answering a question of Mr. van der Weele, the author says that the accuracy of the relative
position of points is of the order of 0.1 mm.
Ensuite M. R. Roelofs (Pays Bas) présente sa communication: »The future
of radial triangulation». Résumé:
In this paper the possibilities of numerical radial triangulation, disregarded
for a long time, are reconsidered in the light of new theoretical and practical
investigations and modern instrumental developments.
When dealing with the theory of radial triangulation the first thing to do is to
investigate the size and influence of systematic errors, which are due to both
ground height differences and camera tilt being different from zero.
Several authors have already determined the systematic error in a single
measured direction or angle, but what is much more important is the systematic
error in those combinations of directions or angles which propagate through the
strip, namely; the azimuth transfer and the scale transfer.
It has proved possible to deduce relatively simple formulas for these system
atic errors in principal point triangulation, expressing them in the ground
inclinations of the radiais concerned and the lateral and longitudinal tilts of the
camera.
These formulas were applied, as an example, to a number of fictitious flights
over various types of terrain, the ground inclinations being read from topo
graphic maps and the camera inclinations being borrowed from the aerotriangula-
tion of a real strip. The results show that with principal point triangulation the
systematic errors in azimuth and scale transfer are not greater than the acci-
cental errors in spatial aerial triangulation for all types of terrain from flat to
rather hilly country, provided that the average camera tilt is kept well below I o .
The formulas mentioned need only a slight modification to represent the
standard accidental errors in azimuth transfer and scale transfer in nadirpoint
triangulation inasfar as generated by the errors in determining camera tilt.
Applying them to the same strips as before results in the conclusion that for
flat and hilly country these standard errors are considerably less than those in
spatial triangulation and that they come up to them only for mountainous
country. In these computations it was allowed for an accuracy (standard error)
of 10' in the determination of camera tilt.
Concluding it might be said that large areas on earth can quite satisfactorily be
triangulated by the radial method. With a view to that, Wild, Switzerland brings
a new type of radial triangulator which is most original in that the pictures,
which are observed stereoscopically, are fixed in position, while a rotating row
of measuring marks is the means for observing the angles between radiais.
Die Zukunft der Radialtriangulation
In diesem Artikel werden die Möglichkeiten der Radialtriangulation von neuem im Lichte
neuer Untersuchungen und moderner instrumentaler Entwicklungen betrachtet.
Insbesondere werden die systematischen Fehler in der Azimutübertragung und der Masstab-
übertragung bei Hauptpunkttriangulation betrachtet. Konkludiert wird, dass diese Fehler nicht
Discussion.
R. Roelofs: The future
of radial triangulation.
(Pubi. Ili R 2)