Full text: Proceedings of the Symposium "From Analytical to Digital" (Part 1)

  
The linearized form of equation (1) is: 
-f9 (Xy) f Ay, -f, ATv 
where g,29g?(xy)/8xg , g,=09°(xy)/dyg 
fom of (xy)ox, , f 20f? (xy)/9y, 
Using the notations 
x T=(ATy |, ATy |, ATy ATyg AS4, AS), AR, AR) 
1=19(xy)-g°(xy) 
1 
Aj 2 (fy fy B gy OxXR.GyYR 9xYn: 9yXn)j 
A La i-th row of the design matrix A 
equation (3) result in 
-e(xy)s Ax-1 ; P 
expressed in linearized form as: 
ATy | + (dF /9Z)AZ + FXO) +x,°=0 
ATyı+(9F,Y /9Z)AZ +FLY©® «y,?-0 
ATy g+ (9Fp* 132) AZ « Fg) +xp°=0 
ATy p+ (Fg! /9Z) AZ «Fg! +yp°=0 
  
  
where FX, FY ..... nonlinear collinearity conditions ; i=L, R 
x 9 ,y P ..... initial image coordinates of patch centers 
; i=L,R 
t y 
X.......vector of parameters 
B, .....design matrix of parameters 
| 
equations (9) result in 
B; X li = 0 
Equations (8) and (11) form the joint system 
-e(xy)=Ax-1 ; P 
Bx+t=0 
- 286 - 
  
-e(xy)=0g°(xy) +0, ATy g +9, XgAS +0, YR AR, +9, ATy gp +0, XR AR, +g, YRAS  - 
With the assumption of given interior and exterior orientation and fixed X,Y-object point 
coordinates, the geometric constraints as derived from the collinearity conditions can be 
(3) 
(4a) 
(4b) 
= 
(8) 
(9a) 
  
(12a) 
(12b)
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.