Full text: Commissions I and II (Part 4)

   
  
  
  
  
Be- 
merkungen 
n| w/b, 
0 og 
1,7 | kaum 
merklich 
3,2 | leicht 
merklich 
4,6 merklich 
6,5 | stórend 
8.4 | stark 
10.3 | erheblich 
11.6 | erheblich 
ng) 
n, 
), 
| 
w, b, | m 
| 
554^ [7090,18 
T9. } “012 
| 
9,3 | 0,11 
105 | 0,10 
13,5 | 0.07 
13,0 | 0.08 
145. |. 0,07 
ung) 
1), 
ler einzelnen Striche 
rscheidung mit dem 
n. b/b, und w/b, sowie 
Maximalintensitáten. 
c) Deutung der Versuchsergebnisse 
Bereits zu Beginn wurde darauf hingewiesen, in welch einfacher Weise Kontrastüber- 
tragungsfunktionen (bei sinusfórmiger Intensitütsverteilung) kombiniert werden kónnen. 
Für die Berechnung gemäß (6) und (7) sind jedoch neben c = W'(N) (5) die Funktionen O (N) 
für das Objektiv und F(N) für den Film erforderlich. 
Wie bereits erwihnt, wurde fiir den Versuch ein Sonnar, größte Öffnung 1:2, auf 1:16 
abgeblendet und nur in Achsnähe benutzt. Unter diesen Umständen wird die Abbildung fast 
ausschließlich durch Beugung beeintrüchtigt, d. h. es kann für O(N) die von H. H. Hop- 
kins [9] angegebene sogenannte „Ideale“ Übertragungsfunktion benutzt werden. Bezüglich 
der Emulsion mit der ihr entsprechenden Funktion F(N) liegen die Verhältnisse etwas schwie- 
riger. Nach Frieser [4] ist hier die Hauptursache für die Kontrastminderung im photo- 
graphischen Bild der sogenannte Diffusionslichthof. Das auf ein bestimmtes Flüchenstück 
auffallende Licht bleibt nicht auf dieses beschrinkt, sondern wird von der Emulsion als einem 
trüben Medium auch in die Umgebung hinausgestreut. Dadurch entsteht Kontrastminderung. 
Zur Charakterisierung dieser Eigenschaft sind drei Konstante k,, k, und o notwendig, prak- 
tisch genügt jedoch die Einführung eines entsprechenden Mittelwertes k?). Die Berechnung 
von F(N) erfolgte gemäß [6] nach einer linearen Exponentialverteilung, und zwar mit k — 30 
und N in L/mm aus 
1 
1+136-N-k 
Die Messungen von Ingelstamu. a. [2] haben gezeigt, daß auf diesem Wege gute Näherungs- 
werte zu erreichen sind. Die festgestellten Abweichungen bei hohen Frequenzen können für 
den vorliegenden Zweck in Kauf genommen werden. 
In Abb. 6 sind die so ermittelten Funktionen O(N) und F(N) dargestellt und gemäß (6) zu 
G(N) kombiniert worden. Die Darstellung entspricht den im Negativ bei ruhendem Test 
(w = 0) vorhandenen Kontrastverhältnissen, da der Objektkontrast mit = 1 gewählt wurde. 
Mit steigender Frequenz sinkt der Kontrast ab, bis zwischen Testgruppe 12 und 13 ein be- 
stimmter Schwellwert (hier etwa 0,03) unterschritten wird, Testgruppe 12 ist gerade noch, 
Testgruppe 13 jedoch nicht mehr ,,aufgelóst^^. Der Schwellwert selbst wird von verschiedenen 
Faktoren beeinflußt [7]. Im vorliegenden Falle wurde er, wie vorstehend beschrieben, in ein- 
facher Weise aus dem Vergleich der Auflösungsmessung mit der Kontrastübertragungsfunk- 
tion bestimmt. 
F(N) = 
Tritt Bildwanderung auf, so ergeben sich die jetzt im Negativ vorhandenen. Kontrast- 
verhältnisse mit S(N) nach Kombination gemäß (7). Jeder Bildwanderung w entspricht eine 
ganz bestimmte Funktion S(N). Für die experimentell hergestellten Stufen 1 bis 7 sind die 
entsprechenden Funktionen S, ;(N) in Abb. 6 eingefügt. Man sieht, wie vornehmlich die 
hohen Frequenzen von der Bildwanderung betroffen werden, der Kontrast sinkt schneller ab, 
der das Auflósungsvermógen bestimmende Schwellwert wird eher, d. h. schon bei niedrigeren 
Frequenzen erreicht bzw. unterschritten. Wahrend S,(/N) noch recht nahe bei G(N) liegt, 
entfernen sich die Funktionen mit zunehmender Bildwanderung immer mehr von ihrem 
ungestórten Verlauf G(N). Die das Auflósungsvermógen bestimmende Kontrastschwelle wurde 
im vorliegenden Falle, wie beschrieben, aus dem Vergleich der Funktion G(N) mit der ent- 
sprechenden Auflósungsbestimmung zu etwa 0,03 ermittelt. Bei allen anderen Funktionen 
S1_7(N) ist ausnahmslos stets die Testgruppe als aufgelöst angesprochen worden, die im 
Kurvenverlauf unmittelbar vor Abfall unter diesen Schwellwert zu finden ist. Die entsprechen- 
2) Auf die Bedeutung und Messung der erwähnten Konstanten kann hier nicht eingegangen, sondern muß auf 
die Literatur, insbesondere auf [4], verwiesen werden. Für das Verständnis des hier behandelten Problemes der 
Bildwanderung sind diese Zusammenhänge aber auch weniger bedeutsam. -Es soll lediglich gezeigt werden, auf 
welchem Wege eine hinreichend zuverlässige Funktion F(N) errechnet wurde, da gemessene Werte für die benutzte 
Emulsion nicht vorlagen. 
11 
  
  
   
    
   
  
     
   
   
   
  
     
     
     
  
  
  
  
  
   
   
    
   
     
  
  
  
  
  
    
   
   
   
   
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.