ung. Wenn
nit blossen
m Betrach-
Umständen
vr ein. EW
in ich den
ld normal,
. Wenn ich
Brennweite
dlich — die
enfalls un-
h 1,91 für
>s hat Herr
en 18/12,
weite, 2/4,
Ohungsfak-
enn ich das
2/5 = 2/0,
g ähnliche
genau das-
it dem Un-
meiner an-
lgen, wäh-
emacht hat
n Zeit hal-
| und kann
. darstellen.
only about
wy, and un-
ie rest of it
yncerned is
tion. I wish
o eliminate
| perception
ocular fac-
ı more im-
hich exists.
d with here
n of recog-
at part of
h is trou-
e to monu-
:ated by the
ve have two
ular vision,
stion: what
it that we
ind at once
little about
Ie is not at
in fact, the
comodation
ion. This is
something you can verify by experiment, and
I shall not say very much about it. Some of it is
in the paper I have presented.
The next question which arises is: what is
the nature of this perception? However, long
before we ask this question, we can do some-
thing extremely practical. If we know what is
the nature of the information that is utilised in
forming a perception of depth, if we wish to
reconstitute the same perception of depth, all
we have to do is to supply the eyes with the
same information, and this is what we hope to
do in a stereoscope.
Now the problem of photogrammetry is more
complicated because, as a matter of fact, it is
absolutely impossible to make a complete over-
all correction of the entire physical world in this
kind of reconstitution which will give you the
identical impression that the original object
would have given from some point of view. In
this paper I have chosen to take the following
sort of ideas as a suitable correction. One
should examine the transverse extent of the ob-
ject which is seen through the stereoscope and
ask what would be the apparent depth if you
were in such a position unaided as to receive the
same transverse impression. One can then find
out two things: first, what the real situation
looks like in such a condition; then one can
also ask what correction best approximates this.
Without going through the long analysis
which would be required exactly to describe the
distortion, permit me to show you one situation
where I take a pair of six pole binoculars. In
this case, the magnification of the base line —
that is the factor by which you multiply the base
line of the eye to get the separation of the ob-
jective — is somewhat bigger than two. Clearly,
it is out of line with the magnification of the
lateral dimension since you interpret the base
line as the only means of seeing depth. It would
be wrong to say that all one has to do is to
choose the same factor for the optical base line
as you have for the ocular. The same magnifi-
cation factor for the optics cannot be applied
directly to base line because it is not true that
this will correct the distortion completely. There
will always be some residual distortion. In point
of fact, if you have a very deep relief you have
progressive foreshortening in approaching the
observer.
Let me show you two slides [not reproduced
here] very quickly to show you what one can
do. The first is a picture of the following type.
You are looking through binoculars whose ob-
jective separation is indicated by L star and R
Star. These are six pole binoculars at an objec-
QUELQUES QUESTIONS D'OPTIQUE PHYSIOLOGIQUE, DISCUSSION
tive 50 metres away, which has a radial depth
of 5 metres and a lateral separation of 2 metres
at the front.
One may multiply the base line by suitable
factors to get the separation of the objectives,
and this I call a corrected instrument. The im-
pression one gets can be mapped through this
corrected instrument. The real impression which
best fits the magnification is shown from a
given distance which is 123 metres, it is shown
by the uninterrupted line. The dashed lines
show the effect of correcting the instrument ac-
cording to the criterion I have given you, and the
dotted lines show the result of leaving the in-
strument uncorrected.
This, then, is in perceptual space. As you see,
the correction is not perfect, nor can it ever be,
but it is considerably better than the correction
would be for an unmodified instrument.
Professeur P. BAETSLE: Notre Président
Monsieur Cruset va nous entretenir quelques
minutes sur l'effet du chromatisme de l'oeil.
Monsieur J. CRusET: Beaucoup d'études ont
été faites depuis longtemps concernant le chro-
matisme de l'oeil isolé et concernant les erreurs
d'interprétation que ce chromatisme de l'oeil
isolé peut provoquer sur, non pas la mesure,
mais l'appréciation de distances. J'ai cherché à
étudier l'influence de la composition de la lu-
miére en vision binoculaire et pour cela je me
suis attaché à mettre en évidence les aberrations
chromatiques d'excentrement des centres des
pupilles — vous savez que l'oeil est un instrument
qui n'est pas parfaitement centré et on peut
penser que la base de triangulation que notre
paire d’yeux réalise en vision binoculaire est
variable avec la radiation que nous examinons.
Le phénomène est peu sensible, aussi ai-je
cherché à réaliser artificiellement une dispersion
des pupilles des yeux humains. La méthode qui
vient d’abord à l’esprit consisterait à utiliser des
feuilles de papier épais percées de trous et pla-
cées devant les yeux. A mon sens cela aurait un
grave inconvénient, celui de donner, puisque ces
trous ne seraient pas dans le plan des pupilles,
un effet directionnel aux yeux. Aussi ai-je pré-
féré utiliser une paire de jumelles trés bien cor-
rigées du chromatisme de facon à mettre en
coincidence les pupilles de sortie de ces jumel-
les avec le plan des pupilles de l'oeil, et à obte-
nir une base variable en diaphragmant la pupille
des yeux au moyen des cercles oculaires des
jumelles mis à différents écarts. Le test utilisé
était constitué par une boite à lumière dont la
face antérieure était noire opaque à l'exception
FR
——————Á
OEIL