Appendix B
COEFFICIENTS FOR OBSERVATION EQUATIONS
(UV W) Air. Station
(1) By definition -
X=
1.5 = YS cosh y = ET
Z-
PRACT
Z'-W
ye 1
(XYZ) (X'Y'Z)) Ses = 6?
2. Differentiating,
Y+S * Y-6 -. Yócos0 « Yócos0 - Y4 sinoó
ie dd = 1 Y*:$v - | «dY + 1.6 —
7x3 [ps SP esses
YàY
4d«4)
tte
jo.
Hog
de Again differentiating,
2Y«ó 2 Yó cosO0 « óYcos0 + 2Y4 cos0-6 (274 Sin042Yó sinO « Y6c0s66) -
Y4sino8
(Note:- Y 2 O tut Ys pp - Y
. Y e.
and $= ged = 4°)
i.e d?8- YxàYy|* |óxa4P $
= xs (Y.4) a [2X0 }-say.às- do
YeY 4 [yx$]
[[&-SP-2(x-x)(8-9) S 4 en - a
4e Again differentiating, higher order terms may similarly be
obtained. Note that all arithmetical operations are multiplications
(vector products and scalar products) and divisions, with Just one
square roots Y x $|
5e To get a particular coefficient for the linear observation
equations, one gives dY, dé, the appropriate values, e.g.
(a) For 59, dy = (1,0,0) and ds = O
ex T
(b) For $8, dar = (0,-1,0) and ds = (0,-1,0)