Full text: Commissions III and IV (Part 5)

Appendix B 
COEFFICIENTS FOR OBSERVATION EQUATIONS 
(UV W) Air. Station 
(1) By definition - 
X= 
1.5 = YS cosh y = ET 
  
Z- 
PRACT 
Z'-W 
ye 1 
(XYZ) (X'Y'Z)) Ses = 6? 
  
2. Differentiating, 
Y+S * Y-6 -. Yócos0 « Yócos0 - Y4 sinoó 
ie dd = 1 Y*:$v - | «dY + 1.6 — 
7x3 [ps SP esses 
  
YàY 
4d«4) 
tte 
jo. 
Hog 
de Again differentiating, 
2Y«ó 2 Yó cosO0 « óYcos0 + 2Y4 cos0-6 (274 Sin042Yó sinO « Y6c0s66) - 
  
  
Y4sino8 
(Note:- Y 2 O tut Ys pp - Y 
. Y e. 
and $= ged = 4°) 
i.e d?8- YxàYy|*  |óxa4P $ 
= xs (Y.4) a [2X0 }-say.às- do 
YeY 4 [yx$] 
  
  
  
  
[[&-SP-2(x-x)(8-9) S 4 en - a 
  
4e Again differentiating, higher order terms may similarly be 
obtained. Note that all arithmetical operations are multiplications 
(vector products and scalar products) and divisions, with Just one 
square roots Y x $| 
  
5e To get a particular coefficient for the linear observation 
equations, one gives dY, dé, the appropriate values, e.g. 
(a) For 59, dy = (1,0,0) and ds = O 
ex T 
(b) For $8, dar = (0,-1,0) and ds = (0,-1,0) 
  
  
  
  
  
  
  
  
  
 
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.