82 ADJUSTMENT OF RHOMBOIDS, ACKERMANN
ii reliable and to give a solution applicable to rhomboids departing further from the
ideal shape, other formulae, which approximate more closely the rigorous solution
, are
developed here.
Following the same line as in section 5, the coefficients of the linearized condition
equation are simplified, now however, only second and higher order terms are neglected.
Introducing
li ar Tobs. — "ideal (6.1)
I and using the expansion
I ;
ctg 1 + da | =1—2 Ada (6.2)
the solution of the normal equation becomes, if the dr’s are given in radians:
I K = 64 {1— 3% (Arg — Ar, - Ar, — Arg) } (6.3)
Whence the resulting corrections v are:
VQ [—2—2 (Arg — Ar] K
U— | 4+2(4r5—Ar7)}K
vg = [—2—2 (4r, — Arz) |] K
v, — [—2—2 (Arg — Ar, t Arg — Ar) IK
i oy — [| 2t 2(4r— Ar, Arg — Ar, t Arqy — Arg) ] K
i vg — [|—2 —2 (Ar, — Arg Ar — Ar) | K (6.4)
v; —| 2t2(A4ry — 4r, t Ar, — dre + Arg — Ary) |K
vg — [—2—2 (Ar; — Ar] K
Il Vg { 4t 2(Ar; —Ar|] K
WE >
Wt Vio = [|—2— 2 (Arg — Ar)] K
i With these results a direct solution for the corresponding corrections to the
Il preliminary coordinates of the points C, D, and E can be derived. Neglecting again
IM second and higher order terms of the Ar’s the result is found to be:
i e de 1
Ye Be. Td [1 16 (—8 Ar, t 10 Ar; —2 Ar, — 22 Ar, +26 Ary + 2 Ary, —
I 9 6 Ar; F4 Arg —2 Arg — 2 Ar, 0) }
i c de
| Yo 7 We —— *7p (1 + # (—8 dr, + 2 dre + Ar, — 18 Ar, +18 Ar, + 2 Area -
] € . .
| 9 2 Ar. Irg —2 Arg Irio) ]
d Ae 1
CD c, EP [1 16 (2 Ar, — 10 Ar, +8 Ar 22 Ar, + 6 Ars — 2 Ary
| 0 26 Ar; + 2 Ars + 2 Arg —4 4ro)}3
d Ae (6.5)
yp*73, 1 2 15 {11 + 4 (—4r, —2 Ira - 3 Ar, t 18 Ar, - 2 Ar, —2 176 —
9 18 Arz — Arg + 2 Ary — A749) ]
le
li tp = 3 (x, + x, ) 35 (Ar, — Arg —2 Arg + 2 lr, — Arg 1710)
A C D ba
le ;
| Y=, tup) 39 (— à Ar, + 6 Ary —3 Ary — 14 Ar, + 14 1e + 3 dr.
" C D 3 6 Ary + 3 Ar40)
i In each equation of the systems (6.4) and (6.5) the constant term of the corrections
corresponds to the solution of section 5. The additional terms represent the modifications
i
i
I
hi
i
i
i
i
Bem
— II —s€ 3