19
Assuming small inclinations dg and dw this expression can be written
€ (de — do)
dx E e (45)
2b'11— 2» (dpa — dq)
After developing (45) into series and neglecting terms of second and
higher order we find the simple expression
C
do == ; (de, — dox) (46)
20
Next we use differentials in the expressions (40)— (43).
The coordinate transformation formulae will then become
| i: B C y c
gm AG) + dp +75 p (do, — de) (47)
C ase
y = (uu 0m p (de, — do) (48)
C ^c
| x" = (x") + 5 dp; + b! (do) — dex) (49)
| 2 2b
|
C rz"
| y" — (y") — 2 do, — y (de — do) (50)
2 2b
If dq, do, dy, and do, are corrections the corrections of the (x')
ete. coordinates can therefore be written
C y
dz’ dq, + — (do, — do 51
9 /1 b 2 1
C | x’ a
dy" 2 | y 1] do, — x dw, (52)
dz’ == + "n d T (de — do | (53)
^ 9 | Va p va 0 | f
C X "H x"
dy" 2 | yp de x + 1) dw, (54)
After substituting the expressions (51)—(54) into the differential for-
mulae (3) and (4) we find the expressions for the corrections of the