41
Next we form the weight number of the expression (137). As usual
we have
n — Puer gm
Qnpny == a SA —iPQu+ Xie
n i=1 WW i=p+1
(n — p iz» p^ 2(n—ppier
LEM xot E xe r0 F000,
"d i=p+1 n i=1 :
2 p? imm :
LE ET az idu (138)
n°; p+1
But
i=p ; 2p—1)(p—1)p
o ipe Bác ta AH SRE NE se)
i=1
2 n—-i+12=124 224324 ..... + (n — p — 1? + (n — p? =
i=p+1
(2% — 2 p + 1) (n — p + 1) (n — p)
E ———— e tm (140)
6
i=p p (1 — p) i=» : (n — p) (n — p 4- 1)
x (1 — 2) m= 2 > ín rd c 1) — 9 ; (141)
i (= DE
After substitution of (139)—(141) into (138) and some elementary
calculations and rearrangements we obtain
p (n — p) |2p(n — p) +1
| Pere ^ SER Qu + 0,2 + Qu. (142)
Qn, Ry 6
n
Substituting the expressions (103)—(106) we find
p (n — p)
7 A 25 €
ax (14 p (n — p) + 25} (143)
nA.
The standard error of a corrected X-coordinate will consequently be
determined as
my = 8 | QrçRy (144)
where s, is the standard error of the image coordinate measurements.
rd
Ue eu pp
T
==