Full text: Commissions III and IV (Part 5)

  
T RARE EE E EE 
ETF 
= : 
  
EX 
62 
Dy, — Dby, — hDo, — bDx, (241) 
Dy, = Dby, — hDw, (242) 
Dy; = Dby, -- hDo, — bDx, (243) 
Dy, — Dby, — hDw, (244) 
For the elevations we will use a special derivation below. 
For the further investigations we concentrate upon the point 2 of 
each model. 
3.21. Cantilever extension 
3.211. The x-coordinates 
We substitute the expressions (212) and (216) into (234) and find 
after some rearrangement for point 2 of the model » — 1,n 
D? in b i=n 
o d It NT ; y 3 %" 21593 ^ 
Dx, = — „= (n — * 4- 1) dg; ES (2m 21 + 1) dbz, 
! i1 ! i-1 
i t 
b i=n 
iz À (n — à + 1)dH, , (245) 
) . 
Next we determine the weight number of the two first terms of (245) 
bo 
e 
to 
ta QE a-i+ D @n-2i+ 1) (246) 
We can easily prove the following relations 
1 n n 
À (n —+ + 1} 6 (2m 1) (n + 1) (247) 
i=1 ) 
1 n n 
EZ On 23 --1lpz-(2m--r1ly)(2m 1) (248) 
i-1 Ó 
n n 
à (n—:+1)(2n—2i+1)=—(n+1)(4n—1) (249) 
  
 
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.