T RARE EE E EE
ETF
= :
EX
62
Dy, — Dby, — hDo, — bDx, (241)
Dy, = Dby, — hDw, (242)
Dy; = Dby, -- hDo, — bDx, (243)
Dy, — Dby, — hDw, (244)
For the elevations we will use a special derivation below.
For the further investigations we concentrate upon the point 2 of
each model.
3.21. Cantilever extension
3.211. The x-coordinates
We substitute the expressions (212) and (216) into (234) and find
after some rearrangement for point 2 of the model » — 1,n
D? in b i=n
o d It NT ; y 3 %" 21593 ^
Dx, = — „= (n — * 4- 1) dg; ES (2m 21 + 1) dbz,
! i1 ! i-1
i t
b i=n
iz À (n — à + 1)dH, , (245)
) .
Next we determine the weight number of the two first terms of (245)
bo
e
to
ta QE a-i+ D @n-2i+ 1) (246)
We can easily prove the following relations
1 n n
À (n —+ + 1} 6 (2m 1) (n + 1) (247)
i=1 )
1 n n
EZ On 23 --1lpz-(2m--r1ly)(2m 1) (248)
i-1 Ó
n n
à (n—:+1)(2n—2i+1)=—(n+1)(4n—1) (249)