76
dx, = — dx,
dy, = — dy,
db (314)
dx, = — dx, — bn —
b
dy, = — dy, — bndx
Consequently
da, — — da,
dy, — — dy,
dx, — dz, Dir
db == (315)
n
dy, — dy,
de = :
bn
Hence the corrections dx and dy in an arbitrary point with the coordi-
nates pb,0 are found from (17)— (18)
P
dx = — dx, + (dx, — dx,)
n
D
dy = — dy, + (dy, — dy,)
n
or, including the measuring errors dz, dy,
) )
daz da, | E um ) zd dz, + dz,
)
2 n n
(316)
p p
dy — dy, | — 1] — dy, + dy,
n n
Assuming the standard error of all coordinate measurements to be
equal we find the weight numbers
(p — nf p?
Qu P Qu = n? T n? E I
or (317)
Qu =0=2(5- 241