A. A Direct Solution
6) Using matrix notation, the system of observational equations for an m-
ray
. solution, according to formulas (3) or (15), may be written as: |
fic
i r 10, Le | 3 f.
ions A, V | B [^ Q
| | | |
of
uals, A» Vo Ba | | 4, 2,
uch |
18
- Az V3 Ba | | 43 is] 9
o © © © o
d.c
geous s e 9 . .
'On-
A V B A )
m m m m
/ssi- - dl. = ; id 8 - m
a
The A; are the coefficient matrices of the corresponding residual vectors
Vi . In case the absolutely given control data are considered flawless
Aj* A55 A29 0 © = An I
the
the unit matrix. The Bj are the coefficient matrices of the vectors of the
corresponding parameter corrections AY + The d: are the vectors of the
&bsolute terms of the observational equations. We may rewrite the system of
observational equations with obvious notation as Av = BA- 4 (19)
with the weights P |
: . Assuming the observations to be independent and normally distributed the
>
most probable values of the unknowns are obtained by minimizing v7 Pv 3
where P denotes the weight matrix
E 7
Te
P3 (20)
"D
"