International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XXXV, Part B2. Istanbul 2004
Brown, K.Q., 1979. Voronoi diagrams from convex hulls.
Information Processing Letters, 9(5): 223-228.
Cignoni, P., Montani, C. and Scopigno, R., 1998. DeWall: a
fast divide & conquer Delaunay triangulation algorithm in EY.
Computer-Aided Design, 30(5): 333-341.
Davis, B.E. and Davis, P.E., 1988. Marine GIS: Concepts and
Considerations, Proc. GIS/LIS '88, Falls Church, VA, USA.
Devillers, O., 2002. On Deletion in Delaunay Triangulations.
International Journal of Computational Geometry and
Applications, 12(3): 193-205.
Devillers, O. and Teillaud, M., 2003. Perturbations and Vertex
Removal in a 3D Delaunay Triangulation, Proc. 14th ACM-
SIAM Symp. Discrete Algorithms (SODA), Baltimore, MD,
USA, pp. 313-319.
Dobkin, D.P. and Laszlo, M.J, 1989. Primitives for the
Manipulation of Three-Dimensional Subdivisions.
Algorithmica, 4: 3-32.
Field, D.A., 1986. Implementing Watson's algorithm in three
dimensions, Proc. 2nd Annual Symp. Computational Geometry.
ACM Press, Yorktown Heights, New York, USA.
Gold, C.M., 1989. Surface Interpolation, spatial adjacency and
GIS. In: J. Raper (Ed.), Three Dimensional Applications in
Geographic Information Systems. Taylor & Francis, pp. 21-35.
Gold, C.M., 1991. Problems with Handling Spatial Data — the
Voronoi Approach. C/SM Journal, 45(1): 65-80.
Gold, C.M., 1996. An Event-Driven Approach to Spatio-
Temporal Mapping. Geomatica, Journal of the Canadian
Institute of Geomatics, 50(A): 415-424.
Gold, C.M., Charters, T.D. and Ramsden, J., 1977. Automated
contour mapping using triangular element data structures and an
interpolant over each triangular domain. In: J. George (Editor),
Proc. Siggraph '77. Computer Graphics, pp. 170-175.
Gold, C.M. and Condal, A.R., 1995. A Spatial Data Structure
Integrating GIS and Simulation in a Marine Environment.
Marine Geodesy, 18: 213-228.
Green, PJ. and Sibson, R., 1978. Computing Dirichlet
tessellations in the plane. The Computer Journal, 21(2): 168-
173.
Guibas, L.J. and Stolfi, J, 1985. Primitives for the
Manipulation of General Subdivisions and the Computation of
Voronoi Diagrams. ACM Transactions on Graphics, 4: 74-123.
Hatcher, G.A.J. and Maher, N., 1999, Real-time GIS for Marine
Applications. In: D.J. Wright and D. Bartlett (Eds), Marine and
Coastal Geographic Information Svstems. Taylor & Francis,
London, pp. 137-147.
Head, M.E.M., Luong, P., Costolo, J.H., Countryman, K. and
Szczechowski, C., 1997. Applications of 3-D visualizations of
oceanographic data bases, Proc. Oceans '97-MTS/IEEE, pp.
1210-1215.
Joe, B., 1991. Construction of three-dimensional Delaunay
triangulations using local transformations. Computer Aided
Geometric Design, 8: 123-142.
Jones, C.B., 1989. Data structures for three-dimensional spatial
information systems in geology. International Journal of
Geographic Information Systems, 3(1): 15-31.
Lorensen, W.E. and Cline, H.E., 1987. Marching Cubes: A
High Resolution 3D. Surface Construction Algorithm.
Computer Graphics, 4: 163-168.
Ledoux, H. and Gold, C.M., 2004. An Efficient Natural
Neighbour Interpolation Algorithm for Geoscientific Modelling,
Proc. 11th Int. Symp. Spatial Data Handling (23-25 August
2004), Leicester, UK. fo appear.
“Li, R. and Saxena, N.K., 1993. Development of an Integrated
' O'Conaill,
708
Marine Geographic Information System. Marine Geodesy, 16:
293-307.
Lockwood, M. and Li, R. 1995.
Information Systems — What Sets Them
Geodesy, 18: 157-159.
Marine Geographic
Apart? Marine
Molenaar, M., 1992. A topology for 3D vector maps. ITC
Journal, 1: 25-33.
Mücke, E.P., Saias, I. and Zhu, B., 1999, Fast randomized point
location without preprocessing in two- and three-dimensional
Delaunay triangulations. Computational Geometry, 12: 63-83.
M.A, Bell S.B.M. and Mason, N.C., 1992.
Developing a prototype 4D GIS on a transputer array. /7C
Journal, 1992(1): 47-54.
Raper, A, (Ed.) 1989. Three Dünensional Applications in
Geographic Information Systems. Taylor & Francis, London.
Universität
Roos, T. 1991. Dynamic Voronoi
Würzburg, Germany.
diagrams,
Samet, H., 1990. The Design and Analysis of Spatial Data
Structures. Addison-Wesley Publishing Company, Reading,
Massachusetts, USA, 493 pp.
Sibson, R., 1981. A brief description of natural neighbour
interpolation. In: V. Barnett (Editor), Interpreting Multivariate
Data. Wiley, New York, USA, pp. 21-36.
Watson, D.F., 1981. Computing the n-dimensional Delaunay
tessellation with application to Voronoi polytopes. The
Computer Journal, 24(2): 167-172.
Watson, D.F., 1992. Contouring: A Guide to the Analysis and
Display of Spatial Data. Pergamon Press, Oxford, UK.
Wright, D.J. and Goodchild, M.F., 1997. Data from the Deep:
Implications for the GIS Community. The International Journal
of Geographical Information Science, 11(6): 523-528.
ab Fac
KEY WOR
ABSTRAC
With widesp
GIS is burg
application :
distribution
operation wi
To interact v
combination
technology. '
The networ
enabled a b
GIS users. T
for wide dis
made GIS ac
- 1.1 Networl
The develo;
applications
Enterprise le
might be eit
Area Networ
World Wide
exists in the |
1.1.1 Host-”
networking i
many termin
Since every
terminals are
has very hig}
problem of th
difficulty of
this model (S
1.1.2 Client-
exist. within
Servers as wi
usually have
centralized re
terminal moc
some resourc