International Archives of the Photogrammetry, R
Figure 7: The surface obtained from the same data after using
an Hermitian smoothing function, the data objects are marked by
plain disks, the scale has been reduced in order to see the whole
top surface
RG SEEN
mur uis ze NC LIH
Sy e Re SS era edP
(d
14
I
ry
LI
Figure 8: The same surface at a different altimetric scale
Berger, M., 1977b. Géométrie. Vol. 2. CEDIC, Paris. Espaces
euclidiens, triangles, cercles et sphéres. [Euclidian spaces, trian-
gles, circles and spheres].
Cartan, H., 1967. Calcul différentiel. Hermann, Paris.
Davis, P. J., 1975. Interpolation and approximation. Dover Pub-
lications Inc., New York. Republication, with minor corrections,
of the 1963 original, with a new preface and bibliography.
Ding, Y. X., 1995. Constrained Delaunay triangulation and the
automatic generation of finite element meshes. J. Huazhong Univ.
Sci. Tech. 23(6), pp. 39-43.
Farestam, S. and Simpson, R. B., 1995. A framework for ad-
vancing front techniques of finite element mesh generation. BIT
35(2), pp. 210-232.
Farin, G., 1990. Surfaces over Dirichlet tessellations. Comput.
Aided Geom. Design 7(1-4), pp. 281-292. Curves and surfaces
in CAGD '89 (Oberwolfach, 1989).
1118
emote Sensing and Spatial Information Sciences, Vol XXXV, Part B3. Istanbul 2004
Gold, C. and Roos, T., 1994. Surface modelling with guar-
anteed consistency - an object-based approach. In: J. Niev-
ergelt, T. Roos, H.-J. Schek and P. Widmayer (eds), Proceed-
ings: IGIS'94: Geographic Information Systems,Monte Verita,
Ascona, Switzerland, Lecture Notes in Computer Science, Vol.
884, Springer-Verlag, Berlin, pp. 70-87.
Guibas, L. J. and Stolfi, J., 1985. Primitives for the manipulation
of general subdivisions and the computation of Voronoi diagrams.
ACM Trans. Graph. 4(2), pp. 74-123.
Jones, C. B. and J., M. W., 1998. Nearest neighbour search for
linear and polygonal objects with constrained triangulations. In:
T. K. Poiker and N. Chrisman (eds), Proceedings of the 8th Inter-
national Symposium on Spatial Data Handling, International Ge-
ographical Union, Geographic Information Science Study Group,
pp. 13-21.
Li, T. S. and Wong, S. M., 1999. Quadrilateral mesh generation
using constrained Delaunay triangulation. Internat. J. Appl. Sci.
Comput. 6(1), pp. 33-38.
Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N., 2000. Spa-
tial tessellations: concepts and applications of Voronoi diagrams.
Second edn, John Wiley & Sons Ltd., Chichester. With a fore-
word by D. G. Kendall.
Piper, B., 1993. Properties of local coordinates based on Dirich-
let tessellations. In: Geometric modelling, Springer, Vienna,
pp. 227-239.
Sibson, R., 1980. A vector identity for the Dirichlet tesselation.
Math. Proc. Camb. Phil. Soc. 87, pp. 151-155.
Sibson, R., 1981. A brief description of natural neighbour inter-
polation. In: V. Barnet (ed.), Interpreting Multivariate Data, John
Wiley & Sons, Chichester, pp. 21-36.
ROBUS
KEY W(
ABSTR/
This pap
ages of n
around tl
invariant
as a desc
well as |
Compare
ities. In
illumina
1 INT
The com
point an
age mat
tures are
forms, €
cally ap
interest
cal affir
assump!
nar or s
useful.
e.g. by.
Schmid
and Scl
uated tl
most cl
the cor
region :
region
itzky ai
Tuytelz
Matas ¢
prefera
tion, bi
clusior
point.
or exhi
In this
affine
els !. /
where
interes
that th
planar
tor for
! Ge