Full text: Proceedings, XXth congress (Part 3)

International Archives of the Photogrammetry, R 
  
Figure 7: The surface obtained from the same data after using 
an Hermitian smoothing function, the data objects are marked by 
plain disks, the scale has been reduced in order to see the whole 
top surface 
      
  
  
   
   
  
RG SEEN 
mur uis ze NC LIH 
Sy e Re SS era edP 
     
  
  
  
(d 
14 
    
   
  
   
I 
ry 
LI 
   
Figure 8: The same surface at a different altimetric scale 
Berger, M., 1977b. Géométrie. Vol. 2. CEDIC, Paris. Espaces 
euclidiens, triangles, cercles et sphéres. [Euclidian spaces, trian- 
gles, circles and spheres]. 
Cartan, H., 1967. Calcul différentiel. Hermann, Paris. 
Davis, P. J., 1975. Interpolation and approximation. Dover Pub- 
lications Inc., New York. Republication, with minor corrections, 
of the 1963 original, with a new preface and bibliography. 
Ding, Y. X., 1995. Constrained Delaunay triangulation and the 
automatic generation of finite element meshes. J. Huazhong Univ. 
Sci. Tech. 23(6), pp. 39-43. 
Farestam, S. and Simpson, R. B., 1995. A framework for ad- 
vancing front techniques of finite element mesh generation. BIT 
35(2), pp. 210-232. 
Farin, G., 1990. Surfaces over Dirichlet tessellations. Comput. 
Aided Geom. Design 7(1-4), pp. 281-292. Curves and surfaces 
in CAGD '89 (Oberwolfach, 1989). 
1118 
emote Sensing and Spatial Information Sciences, Vol XXXV, Part B3. Istanbul 2004 
Gold, C. and Roos, T., 1994. Surface modelling with guar- 
anteed consistency - an object-based approach. In: J. Niev- 
ergelt, T. Roos, H.-J. Schek and P. Widmayer (eds), Proceed- 
ings: IGIS'94: Geographic Information Systems,Monte Verita, 
Ascona, Switzerland, Lecture Notes in Computer Science, Vol. 
884, Springer-Verlag, Berlin, pp. 70-87. 
Guibas, L. J. and Stolfi, J., 1985. Primitives for the manipulation 
of general subdivisions and the computation of Voronoi diagrams. 
ACM Trans. Graph. 4(2), pp. 74-123. 
Jones, C. B. and J., M. W., 1998. Nearest neighbour search for 
linear and polygonal objects with constrained triangulations. In: 
T. K. Poiker and N. Chrisman (eds), Proceedings of the 8th Inter- 
national Symposium on Spatial Data Handling, International Ge- 
ographical Union, Geographic Information Science Study Group, 
pp. 13-21. 
Li, T. S. and Wong, S. M., 1999. Quadrilateral mesh generation 
using constrained Delaunay triangulation. Internat. J. Appl. Sci. 
Comput. 6(1), pp. 33-38. 
Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N., 2000. Spa- 
tial tessellations: concepts and applications of Voronoi diagrams. 
Second edn, John Wiley & Sons Ltd., Chichester. With a fore- 
word by D. G. Kendall. 
Piper, B., 1993. Properties of local coordinates based on Dirich- 
let tessellations. In: Geometric modelling, Springer, Vienna, 
pp. 227-239. 
Sibson, R., 1980. A vector identity for the Dirichlet tesselation. 
Math. Proc. Camb. Phil. Soc. 87, pp. 151-155. 
Sibson, R., 1981. A brief description of natural neighbour inter- 
polation. In: V. Barnet (ed.), Interpreting Multivariate Data, John 
Wiley & Sons, Chichester, pp. 21-36. 
    
   
  
  
  
  
   
  
  
  
    
    
     
   
    
     
  
  
   
  
    
      
   
  
  
  
   
    
   
   
  
    
   
  
    
   
      
   
ROBUS 
KEY W( 
ABSTR/ 
This pap 
ages of n 
around tl 
invariant 
as a desc 
well as | 
Compare 
ities. In 
illumina 
1 INT 
The com 
point an 
age mat 
tures are 
forms, € 
cally ap 
interest 
cal affir 
assump! 
nar or s 
useful. 
e.g. by. 
Schmid 
and Scl 
uated tl 
most cl 
the cor 
region : 
region 
itzky ai 
Tuytelz 
Matas ¢ 
prefera 
tion, bi 
clusior 
point. 
or exhi 
In this 
affine 
els !. / 
where 
interes 
that th 
planar 
tor for 
  
! Ge
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.