International Archives of the Photo
Ó
4. DATA PROCESSING
Data processing for generating a precision building model from
the acquired sensory data involves two main processes,
registration and modelling.
4.1 Registration
Each data set is defined in its own local coordinate system. To
combine such data sets, we should determine the relationships
between the coordinate systems. Registration aims at defining
about an absolute coordinate system the local coordinate system
in which each data set (either laser scanner point clouds or
digital camera images) is expressed. Registration is based on
the reference points.
4.1.1 Mathematical model for registration of point
clouds: we establish a model graph for the point clouds
acquired at all the positions, as shown in Fig. 3. The model
graph includes each point cloud as a node and represents the
existence of overlap between two point clouds as an arc. Each
arc incorporate a transformation represented as T; , which
establishes relationship between two coordinate systems in
which two point cloud are defined. It makes it possible to
convert a point cloud into the coordinate system of another
points and vice versa. The final goal of the registration is to
convert each point cloud into an absolute coordinate system
denoted as G. This transformation is denoted as T;; . Both
kinds of transformation, 7; and 7j; are classified into 3D
similarity (or called rigid-body) transformation that have three
parameters for rotation, (0,9, «) and three parameters for
translation, (x, y,.z,) ). defined as
x; XG *,
YN; = R( , 0, K) Ya + X , ( ] )
z ZG =,
!
where R(w,#,x) is a 3D rotational matrix defined as
1 0 0 cosó 0 sing | |cosK — sink 0
0 coso -Ssino/ 0 1 0 ||sik. cosk .O
0 sino coso —sing 0 cosó 0 0 |
Figure 3. A model graph for point clouds
erammetry, Remote Sensing and Spatial Inf
ormation Sciences, Vol XXXV. Part B7. Istanbul 2004
41.2 Mathematical model for registration of images: we
establish a model graph for the images acquired at all the
positions, as shown in Fig. 4. The model graph includes each
image as a node and represents the existence of overlap
between two images as an arc. Each arc incorporate a
transformation represented as Rj which establishes relative
orientation between two images (Ii, Ij). The final goal of the
registration is to establish the exterior orientation E;; between
each image and an absolute coordinate system. With the
exterior orientation, we determine where a point in the object
space appear in an image based on the collinearity equations
> I (Xg T Xo y + (Ye = Yo )» t (Zg —- Z9)
ll Xe -Xo}n te 7 Yon am la
hes Kg = XI +g = Yorn * Uo = Zo
Er (Xe - ‘alu * (Y; - Yos * (Zo - Zo)'s
where (x;,y;) is the image point corresponding to the ground
boint. (X&,YG.Zg defined in an absolute coordinate system;
G^*JG G J ,
(Xo, Yo, Zo) are the coordinates of the position of the camera;
and (r,) is an element of the rotational matrix composed by
three rotation angles (&,ÿ,Æ) indicating the orientation of the
camera.
^a x
Rai | | Ros
x ®
| Eacı Esc
14 Ru [3
Figure 4. A model graph for images
4.1.3 Parameter estimation using block adjustment: We
estimate the transformation parameters associated with the
registration of point clouds and images using block adjustment.
The main characteristic of the block adjustment is simultaneous
determination of the transformation parameters of the entire
data sets rather than sequential determination of the parameters
of each individual data set. We establish a set of non-linear
equations associated with the entire data sets. This set includes
the transformation parameters as unknowns and the coordinates
of some points in the data sets as observations. Some points
among the points used as observations are also measured by à
total station to provide their coordinates in an absolute ground
coordinates. These points serve as control points that relates the
data expressed in local coordinate systems to the ground
coordinate system. In case of the example in Fig. 2, four sets of
3D similarity transformation parameters for the point clouds
and four sets of exterior orientation for the images are to be
estimated.
986
In