TABLE 2
THEODOLITE DIRECTIONS AND THEODOLITE IMAGE COORDINATES
FROM THE RIGHT STATION
Theodolite Directions Theodolite Image
a 8 X y
101 | 44 07 - 08 -00 24 75579 29.3958 -0.7554
103 47 57 T1 -00 25 25 22.2551 -0.7574
105 50 30 36 -00 25 10 17.6147 -0.7434
107 53 11 35 -00 26 32 12.8275 -0.7782
109 57 10 58 -00 25 06 5.7961 -0.7289
1001 Ly 08 02 33 54 58 29.3673 70.0775
1003 47 55 33 34 21 22 22.3053 70.0389
1005 50 32 16 34 36 12 17.5647 70.0550
1007 53 07 38 34 48 32 12.9394 70.1042
1009 57 13 59 34 57 49 5.7081 69.9982
3001 44 09 14 63 46 56 29.3292 211.6217
3003 47 56 58 64 TL 11 22.2621 211.7955
3005 50 33 23 61 22 23 17.5312 211.6137
3007 53 10 26 64 32 35 12.8566 211.7894
3009 57 13 35 64 39 58 5.7198 211.5734
a 150 30 00
The coplanarity equation for any two conju-
gate points of an insert having an image co-
ordinates (x, z) on the left image and (x, z)
on the rgiht image takes this form:
Oo B
B, z
x z c
x z c
The above equation takes this form
cC B. (z - z) + B, (xz - zx) = 0
where B, is the horizontal projection of
the distance between the two theodolite
stations which is an unknown parameter.
The least square solution of the above equa-
tion gives the value of the ratio
113
Finally, the relative orientation parameters
are known and have those values:
- All the rotation parameters are having
zero values.
- By parameter has a zero value and B, para-
meter can be calculated from the above
equation for any assumed values of Bx.
The inserts co-ordinates can be obtained by
using these values of the relative orienta-
tion parameters and the exact value of By.
Inserts Co-ordinates
The values of the relative orientation para-
meters which are required to orient the right
theodolite image relative to the left one are
given. Moreover,it was found that all the re-
lative orientation parameters except Bg para-
meter are having zero values. That means the
two theodolite images are on the same vertical
plane and the image axes (x, z) of the left