Beispiel: Es sei Juli 28:5: © = 329° 5"
Man hat für diesen Tag (vergl. pag. 1
^o qu g6918'; © = 125° 48"; log R — 00065;
r Kenntnisse über die Geschwindigkeit, wird
In Ermangelung irgend welche
Kometen und Meteore.
93! — — 17° 24' beobachtet.
29):
log G = 9:9935.
2 ; ;
— also eine parabolische Bewegung angenommen, also
= R )
Die weitere Rechnung wird:
; e — [= 299? 52'
log cos (Q' — 7) = 9:5895
log cos 8! — 9:919
log sin (8 — 1) — 99644,
log sin d sin = 94157,
log sin cosy = 99441,
log sin = 9°9679
log cos y — 9:5692
log sin (p — 4) = 9:8142
$= 68°14
9 — 108 55
log sin y = 95078,
log sin q — 9:9159
log cos — 9:9162,,
log cos $B cos (& — 7) = 95108»
9:9733
log cos 8 sin (& — 7) = 99521,
8 — / = 250° 6!
g — 286 19
B — —17 44
G
log v — 01472; £g — 98463.
€ — (9 = 160? 31'
log cos (2 — ©) — 99144,
log cos B = 9°9788
log sin (& — ©) = 93281
log Rv = 01537
log sin $8 — 9:488,
log V sin i = 96374
9:8584
log V p cos i — 96556
log y 5 — 97972
log p = 9:5914
leg V p "v = 99444
log cossBeos(&— (Q) — 9:9582»
log Ê == 95879
Subir — 01994
log sin V — 98916,
log cos V = 91873,
V= — 127° 49’
§ = 305° 48'
i= 43 48
ne 738 37
log g = 92934
Würde man eine Ellipse voraussetzen mit der Halbaxe gleich 5, so wäre
1 G
== 5, leg > — —) = 02480, logv — 01240; log — = 9'8694
R a v
log sin (p — 4) = 98373
(e — ©) 2 157? 89'.
log V5 v — 9:9269
o — 111?40' log cos(¥—()= 95661, log cos B cos(£—O))= 9°9454
log sin y = 9:5018,,
log sin q = 99682
log cos y = 99762,
log cos SBcos(S—41)- 9756135
9:9648
log cos B = 99796
log sin(£—©)= 95801
log Rv = 01305
log sin B = 947604
log y p sin i = 9:6065,
P
log t 9:5993
Subtr = 01807
log e sin V = 9:8726,
log e cos V = 91800,
log cos Bsin(8—1)- 99444, > 9:8873 V == — 128°50'
Q — / = 247° 14' log Y p cos à = 9:6902
Q = 283 27 log VB = 98029 X = 305° 48'
$817.95 log p = 9°6058 i= 39 31
DES T= T4 44
hg = 59088 log a = 06990
log cos gp. = 9'4534
log e = 9°9817
SCHI