{ e] { X Yn Zt i JA }
21
where: n = 1f,...,N > - number of ground control points,
t — line number, j - pixel possition in the line Cimage
visualization is required for determination of these
coordinates).
The set of coordinates X n° Yan? <n CD TM of freely distributed
points Cwhich inform about terrain relief) is denoted as:
{x} = {* tw 2)
where: m - 1,...,M - number of DT M points.
The terrain relief information < T given by interpolation
using two dimensional third order splines [Zavijalow 1980].
&.1. Correction functions
For the images to be corrected two empirically established
functions are used [Pyka 1985]:
a2 basic
dX'zs f CX',Y'2 - A * AX'- A Y'« AX" “+ AX'Y + AY? +
x o
1 e 4 5
Cia
T » 3 » 2, 9 2 » 2 ‚+
+ AgX + AX v. AX Y’ 5+ AX "ev
9? om 9 ? Um » » »2 » ? » 2
dY £ CX Y B5* B,X * BY + BX + BX Y°+ BY +
3 2 3 2,,2 95»2 4,,9 Cru»
* BgX + BOX Y'« Bg! * BX Yt. B,oX y. B, ,* ¥ +...
where: dX’, dY' - corrections changing pixel possition Con the
reference plane shown in Fig.1) to correct place Cpoint R',
X', Y' - ground coordinates calculated according to the
collinearity equations for scanner imagery [Konecny, 19711,
using exterior orientation data ,<Q and image pixel rdi, jd
coordinates à and / of control points.
bd) auxiliary
t =F CX,¥YD =C.-C,X -C.Y - CX?’ - C xy - cy?
x 1 4
O 2 3 5
2 y Cæ2ad
- Cet - CX Y
Se ; = " 2. a 2 n.
J ED Do D,X D_Y Dx D XY DAY
8 a 8 2,2 can)
Dex - DR Y - DgXY - Dx y iv
X,Y-ground coordinates of control points determined in set ORO
The coefficients A,B,C,D of basic and auxilliary correction
functions are obtained by least square solution of equations
C15 and (2) for N ground control points.
Registered during the flight attitude parameters Cexternal
orientation elements) are not errorfree and have systematic
character [Schuhr and Konecny,1984]. Therefore, simple formulae
C10 can be used satisfactorily for computation of correction
vectors dX'dY; and to eliminate the errors from the data <Q
121