ntation
Image
n and
lee and
mputer
Pattern
mputer
C IEEE
)3-215,
| prioris
Vision
ld, A.,
Squares
fachine
on via
achine,
o Alto,
Mateo,
limum-
tanding
ntation
lage in
nce on
1990),
hnique
IEEE
dian of
Icture",
Istering
iational
cember
n, DC,
hrough
Vol.1,
iption",
rs and
estimation by minimum descriprion length", The annals of
statistics, 1983, Vol.11, no.2, 416-431.
Rissanen, J., "Universal coding, infromation, prediction,
and estimation", IEEE Transactions on Information
Theory, Vol.IT-30, No.4, July, 1984.
Rodriquez, A.A. and Mitchell, O.R., "Image segmentation
by background extraction refinements", SPIE Vol.1192
intelligent Robots and Computer Vision VIII: algorithms
and techniques (1989).
Snyder, W., Bilbro, G., Logenthiran, A. and Rajala, S.,
"Optimal thresholding - a new approach", Pattern
Recognition Letters 11 (1990) 803-810.
Sumanaweera, T.S., Healey, G., Lee, B.U., Binford, T.O.,
and Ponce, J., "Image segmentation using geometric and
physical constraints, Proceedings, Image Understanding
Workshop (Cambridge, MA, April 6-8, 1988), Morgan
Kaufmann, San Mateo, CA, 1988, 1091-1099.
Tsikos, CJ. and Bajcsy, RK., "Segmentation via
manipulation”, IEEE Transactions on Robotics and
Automation, Vol.7., No.3, June 1991.
Zhang, Y., "Utilizing high level knowledge in middle
level image analysis", ISPRS congress, Commission III,
Washington, D.C., U.S.A., 1992.
original image segmented image vecotor data
(A
dA 2 intensity information
64% d ly
dau
0000
A
Wd
DA
522582557
4
225%
Ha
p
shape-based measurement
€
vectorization )
plit-and-merge (xm
Fig.1
original chain code
| calculating curvature value |
| gaussian laplacian filering |
| detecting high curvature points |
| determining position of first node |
| initial partition of boundary |
A,
| optimization of position of one node |
(final optimal positions >)
Fig.4
727