2.3 Vertical Projection onto a Tangent Plane T,
(Maximal Distance)
In this case, the perspective center L is at a distance
LP’ =D from the tangent plane T, , the relation between
$, and $', is given by the equation:
i . e?sin(20,)
¢’,=-¢,+arcs wt Q1)
N
0
The normal distance LP’ =D between the center L and the
plane T, is given by:
cos,
D-N' *[N,*H]
cos’, Ga)
The mapping equations can be obtained by the same
method explained above. The analogy of equations (16)
gives the mapping coordinates relating to the new system:
, CsindA
x,=D
G-Ssin®', -Ccosd®',cosdA
(23)
F'+Scos®', -Csin®' cosdA
G /-Ssind", - CcosQ", cosdA
where
yi^
_e*N sin cosd’, - (H + h, + N )sinAd
a
F'
Q4)
Sd -e?N sino, sin $ + (H + h, + N.) cosA®
a
C and S are determined from equation (17).
2.4 Inverse Mapping Equations
The inverse mapping equations for the vertical
prespective projection of the ellipsoid permit the
calculation of geoditic latitude d and longitude À for a
selected point which has rectangular coordinates x, , and
yi:
2.4.1 Geoditic Latitude ¢ : Since the mapping equations
(18),(19) are linear in sinA and cosA, then they can be
arranged as follows:
A, C sin) + A, C cos) = A, S + A,
A, C sind + A, C cosÀ = A, S + As 25)
By elliminating A from equations (25) we get a quadratic
equation in S, which has two solutions. One of them
gives the latitude of the nearest point on the ellipsoid, the
other of the hidden point on the other side. Since Z>0
then the positive root is considered. So we have :
sind = a (26)
336
Then by using an itteration method we get ¢.
2.4.2 Geoditic Longitude À: After some trignometric
calculations equations (25) can be reduced to:
Tsi =
A=A, an i So co (27)
S (y,sino, + Hcos®,) - 9, G - HF)
where: T=[H+h,+N,(1-e")]/a
References
[1] Abbas, Y. Triple projection of a topographic surface
from an external persepective center, Ph.D Thesis, Assuit
University, Egypt (1993).
[2] Alfred, L. GPS Satellite Survying, John Wiley and
Sons, Inc., New York (1990).
[3]Beate, M., Kartenprojektionen des dreiacbsigin
Ellipsoid Geodatishes Institut, Stuttgart (1991).
[4] Dragomir, V. Theory of Earth Shape., Elsevier
Scientific Publishing Company, Amsterdam, Oxford, New
York (1982).
[5] Dumetrescu T.V., Kosmographishe Persepective
Projektionen. Allgemeine Vermeasugs Nachrichten pp.
91-104 (1974).
[6] Fredenick P. , Map Projection Methods, Sigma
Scientific Inc., Blacksburg, Virginia (1984)
[7] Kahle H.G., Einführung in die Hóhere Geodasie
Verlag der Fachverein, Zürich, (1988).
[8] Lauf G.B. Geodesy and Map Projection , Tafe Pub.
Unit (1983).
[9] Peno P., Transformation of Rectangular Coordinates
into Geographical by Closed Formulas, Mapping and
Photogrammetry Vol. 20, No. 3, pp 175-177, (1978).
[10] Snyder P.J., The perspective Map Projection of the
Earth, The American Cartographer Vol. 8, No. 2, pp 149-
160 (1981).
International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B4. Vienna 1996
KE
ABS
The
top
and
canc
and
Run
pol
ing
nitic
It 1s
tion
the
info
the
tion
digi:
sym
ully.
poin
as p
mou
it is
digit
el w
digit
ning
mati
The
mati
imag
the {
ing ı
the ı
nal ]
tract
d)C