Full text: Oeuvres mathématiques diverses (Tome 1)

DISSERTATION M. P. E. A. S. 
993 
Probavimus autem rectangulum sub KL in portionem tangentis ER 
iquari rectangulo sub QE in EF; item rectangulum sub KL in XS 
equari rectangulo sub PF in FG; item rectangulum sub KL in YT 
squari rectangulo sub OG in GH; denique rectangulum sub KL in ZV 
i" 
"Do 
eequari rectangulo sub NH in HI : ergo rectangulum sub KL in totam 
circumseriptam est zequale summze rectangulorum sub QE in EF, sub 
PF in FG, sub OG in GH et sub NH in HI. Si autem in rectas FP, GO, 
HN, IM (qui sensim decrescunt quo propius accedunt ad verticem 
paraboles) continuatas demittantur perpendiculares (seu parallel 
basi) a punctis Q, P, O, N reetze Qv, P0, OA, N^, patet 
rectangulum QEF;  :quale esse rectangulo sub QE in EF; 
item rectangulum 90F gquari rectangulo sub PF in FG, 
rectangulum 2G equari rectangulo sub OG in GH, 
denique rectangulum oH equari rectangulo sub NH in HI. 
Ergo rectangulum sub KL in circumseriptam est :equale rectangulis 
yE, 0F, AG, 9H. 
Sed probavimus rectangulum sub KL in cireumseriptam esse minus 
segmento parabolico EQMI : ergo summa rectangulorum YE, 0F, 4G, 
9H erit minor dicto segmento parabolico EQMI. Quod est absurdum : 
illa enim rectangula constituunt figuram ex rectangulis compositam
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.