je
Ar
it
ın
un
nn
En
n
ce
3r
AS
17T
Er ME
}
BL
n
+
.L
A
DIE VERDÜNNTEN LÖSUNGEN.
es
187
facher Molekeln zu erkennen, die aus der Oberflächenspannung zu dem
gleichen Schlusse führen.
Zu solchen sich im flüssigen Zustand polymerisierenden Stoffen gehören
die Alkohole, deren n-Werte bis 2:6 gehen, die Fettsäuren, einige Ketone,
Nitrile, viele‘ flüssige anorganische Verbindungen, insbesondere auch das
Wasser, dessen n von 1°7 bei o° bis 1°3 bei 140° geht.
Dagegen sind Kohlenwasserstoffe und ihre Halogenabkömmlinge, Äther
and Ester normal, ebenso manche anorganische Flüssigkeiten, Säurechloride
und -anhydride, Schwefelverbindungen, Anilin, Pyridin, Chinolin usw.
Indessen muß betont werden, daß sich hier noch mancherlei Anomalien
finden, die bisher keine genügende Erklärung gefunden haben. Man hat
Stoffe beobachtet, bei denen die Größe B bis zum Werte 4 ansteigt; anderer-
seits ist die oben angedeutete Berechnung des Assoziationsgrades aus der
Größe B nicht einwandfrei, da die Veränderlichkeit des Zustandes mit der
Temperatur entscheidend mitwirkt. Das Problem erwartet somit noch
eine weitere Entwicklung und Vertiefung auf Grund der längst angestrebten
allgemeinen Theorie des Flüssigkeitszustandes (K. Drucker 1909).
ACHTES KAPITEL
Die verdünnten Lösungen
ZA Wgemeines. Streng genommen gehört die Lehre von den Lösungen
in den zweiten Teil dieses Werkes, der von den Beziehungen zwischen
zweien und mehreren Stoffen handelt, während der erste der Betrachtung
der reinen Stoffe als einzelner Individuen gewidmet ist. Indessen erscheint
es angemessen, die verdünnten Lösungen an dieser Stelle zu behandeln.
Durch den Zustand einer verdünnten Lösung gewinnen die Stoffe kolli-
gative Eigentümlichkeiten, welche gestatten, den Lösungszustand wie
eine besondere Formart zu betrachten, und zwar als ein Analogon des Gas-
zustandes. Zwar ergeben sich die hier zu entwickelnden Beziehungen auch
als einfachste Grenzfälle der allgemeineren Gesetze, welche das Verhalten
der Gleichgewichtszustände bei zwei oder mehr Stoffen regeln; aber die
Vereinfachung, die aus dem Übergange auf die verdünnten Lösungen ent-
steht, ist so bedeutend, und die Wichtigkeit der entsprechenden Gesetze
ist so groß, daß die vorgängige Kenntnis dieser Grenzfälle auch das beste
Mittel ist, in die allgemeinere Beziehung einzudringen und sie zu beherrschen.
Der Zustand, welchen die gelösten Stoffe innerhalb der Lösung annehmen,
ist schon früher oft als ein vergleichbarer angesehen worden, und verschiedene
Forscher haben gerade von der Untersuchung der verdünnten Lösungen
die einfachsten Resultate erwartet. Zu ihrer gegenwärtigen Bedeutung
sind diese Betrachtungen indessen erst durch die Arbeiten van ’t Hoffs
(1886) gelangt, welche die frühere ungefähre Analogie in eine festgefügte
und zu zahlenmäßiger Anwendung bereite Theorie verwandelt haben. Der
Grundgedanke dieser Theorie ist, daß die gelösten Stoffe innerhalb ihrer