I. Abschnitt: Altertum und Mittelalter.
Cassiodors zurückgeht, in das Trivium und das Quadrivium eingeteilt;
zu dem Trivium gehörten die drei Artes sermocinales (Grammatik, Rhe-
torik, Dialektik), zu dem Quadrivium die Artes reales: Arithmetik, Musik,
Geometrie und Astronomie, Das sind die septem artes liberales, die nach-
her auf den Universitäten den Lehrgegenstand der Artistenfakultät bilden.
In dem Quadrivium also wurden die Klosterschüler mit der Mathematik
und den Naturwissenschaften bekannt, und da uns genugsam Kompendien
dessen, was in den Klosterschulen im Quadrivium gelehrt wurde, erhalten
geblieben sind, so läßt sich auch ein Überblick über das mathematisch-
naturwissenschaftliche Lehrpensum derselben geben.
Die Arithmetik wurde in den ältesten Zeiten auch einfach mit „com-
putus‘“ bezeichnet; später trat „abacus‘‘ an die Stelle dieses Ausdrucks,
bis dieser schließlich von dem Worte „Algorithmus‘ verdrängt. wurde.
Diese drei Bezeichnungen beziehen sich auf die verschiedenen Verfah-
rungsweisen beim Rechnen, so daß man hinsichtlich der mittelalterlichen
Rechnungsarten drei Perioden zu unterscheiden hat, die komputistische
von Alkuin bis etwa 1000 n. Chr., die abacistische von 1000 bis etwa 1200;
und die algorithmische von 1200 an. Den Lehrgegenstand des Rechnens
bildeten in allen diesen Perioden die vier Spezies mit ganzen Zahlen und
mit Brüchen. Die komputistische ist durch den ausschließlichen Gebrauch
der römischen Zahlzeichen und durch das Fingerrechnen charakterisiert,
Dieses Fingerrechnen = computus digitalis, ist jedoch keine Rechen-
methode, sondern nur ein mnemotechnisches Hilfsmittel, durch die Hal-
tung der Finger gewisse Zahlen, z. B. die Teilprodukte beim Multipli-
zieren festzuhalten; es machte die Kenntnis des Einmaleins durchaus
nicht entbehrlich, so daß das gedächtnismäßige Einüben des Einmaleins
durch Aufsagen desselben im Chor oder durch tatsächliches Absingen das
ganze Mittelalter hindurch an den Klosterschulen üblich war. Als Lehr-
duch des Computus diente in jener Zeit namentlich Bedas Buch: De ratione
computi, während des Hrabanus Maurus ausführliches Handbuch der
Lehre vom Computus — 820 abgefaßt, — von den Lehrern mehr als Nach-
schlage- und Hilfsbuch gebraucht wurde. Da das Rechnen mit römischen
Zahlzeichen sehr umständlich war, so bediente man sich in ausgedehntem
Maße der Rechenknechte. Besondere Schwierigkeiten boten die Division
und das Rechnen mit Brüchen, daher wurden sie oft nur wenig im Unter-
richt behandelt, und man verwandte häufig den Calculus des Victorius,
eine Tabelle, aus der Vervielfältigungen sowohl ganzer als gebrochener
Zahlen in großer Ausdehnung entnommen werden konnten. In der zweiten
Hälfte des 10. Jahrhunderts führte sodann Gerbert den Abacus in den
Rechenunterricht der Klosterschulen, ein und damit beginnt jene zweite
Periode, die durch den Gebrauch des Abacus, das Kolumnenrechnen und
die Einführung von Ziffern an die Stelle der römischen Zahlzeichen ge-