Full text: Theorie der Luftkräfte (2. Band)

P 
VIL. Der Mehrdecker. 
Liegen die beiden Flügel untereinander, so daß ß, + ß, immer ein 
spitzer Winkel ist, so wird W.2 = W,, positiv, liegen sie aber so, daß 
8, + Ba überwiegend negativ ist, so wird dieser induzierte Widerstand 
negativ. 
Im allgemeinen Falle, in welchem die beiden tragenden Linien nicht 
in einer Querebene liegen, ergibt sich folgendes Resultat, das wir nach 
Prandtl hier ohne Beweis angeben wollen: 
Es sei wieder ds, ein Element des einen. 
in der Flugrichtung zurückliegenden Trag- 
flügels, ds, ein Element des anderen und ı 
ihre gegenseitige Entfernung. Die x-Achse 
(Abb. 161) werde in die Richtung von ds, 
gelegt, die y-Achse in die Richtung von dan, 
(senkrecht zur Flugrichtung und ds,), die 
z-Achse in die dem Fluge entgegengesetzte 
Richtung. Die Projektion von r in die 
(xy)-Ebene sei @. Der Winkel, den @ mit 
dn, bildet, sei wieder ß, und entsprechend 
Bßı der Winkel, den dn, mit der Parallelen 
zu @ einschließt; x endlich sei der Winkel 
zwischen @ und r. Dann ist die Kompo- 
nente des Geschwindigkeitsvektors, den [/ 
am Element ds, in Richtung dn, hervorruft: 
Dia= ji / T1ds, & + sin An (ßı + Pa) __ Sin « 008 Pr 008 fa! . (7,8) 
dı 
Man erhält also als induzierten Widerstand, den ZI durch [I erfährt: 
Was] [31 Drdeder[ 0 HEROSOE A) Snash00Sh|,  (7g 
dı De 
welcher Ausdruck für x = 0 wieder in den Ausdruck (7,7) übergeht. 
Der Widerstand, der an / durch ZI hervorgerufen wird, kann aus (7,9) 
dadurch erhalten werden, daß an Stelle von x der Wert x + «, an Stelle 
von ß, und ß, die Werte x + ß, und x + ß, gesetzt werden. Man erhält so: 
Wa=ZffT, T,ds, de [ER ESEE A) EeOOE A (7,10) 
h h_ 
Die beiden Widerstände W,, und W,, sind also nur in dem vorher 
behandelten Falle x = 0, wenn die beiden Fäden in einer Querebene 
liegen, einander gleich. Es ist aber von besonderer Wichtigkeit, daß 
ihre Summe 
LP, T,dse,d 
Wır + War = E / / Tu Tafel Ss (EA) (7A) 
"he
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.