1+c{i
eichnet
3ig für
‚dius R
Coordi-
Y, z)
2.38)
2,39)
<s. daß
irmale
2.40)
?» und
2,38)
Ss. 925
ür die
lichen.
vr der
gilt.
gel K
anhen
$ 8. Die Kräfte bei der Potentialströmung.
29
vesprochenen Impulssatz auf den Flüssigkeitsraum an, der von ihr und
ler Körperoberfläche begrenzt wird. Wenn X die Kraft bedeutet, welche
lie Flüssigkeit auf den Körper ausübt, so muß, da actio = reactio, —X
lie Kraft sein, die vom Körper auf die Flüssigkeit ausgeübt wird; sie stellt
lie Resultierende der Kräfte dar, die längs dieser Körperoberfläche auf
lie Flüssigkeit wirken. Auf die Oberfläche der Kugel mit sehr großem
Radius wird in der Richtung nach innen überall der Flüssigkeitsdruck
wirken, dessen Resultierende wir mit XD bezeichnen wollen. Dann lehrt
ler Impulssatz:
Sekundlicher Impulsfluß durch K ist gleich —X +0. (2,41)
Für den Impulsfluß kommt nur die Kugel mit großem Radius in
Frage, da ja durch die Körperoberfläche keine Flüssigkeit strömt.
Es verbleiben uns also nur Betrachtungen über die Kugel mit großem
Radius. Hätten wir nur die ungestörte Strömung, so ist klar, daß dann
sowohl der Druck D als auch die Impulswanderung, über die Kugel-
9berfläche erstreckt, den Wert Null haben müßte. Wir brauchen also
für die Impulswanderung und den Druck nur die Werte für v — v„ und
D— DD. heranzuziehen. Ist df ein Flächenelement der Kugeloberfläche
und da das entsprechende Stück der konzentrischen Einheitskugel,
so wird
dt=r da.
Bei der Berechnung des Integrals sowohl für den Impuls als auch
für den Druck tritt zu df ein Ausdruck mit dem Faktor 1/r3%. ‚Da r auf
der Kugel konstant bleibt, wird also jedesmal der Faktor l/r vor das
Integralzeichen treten müssen. Daraus folgt aber, ohne daß wir den
wirklichen Wert dieser Integrale zu berechnen brauchen, daß mit r— ©
sowohl der Druck D als auch der Überschuß des austretenden über
den eintretenden Impuls den Wert Null haben müssen. Dann zeigt aber
‘2,41), daß auch X gleich Null sein muß. Wir haben also das Resultat:
In einer Potentialströmung ist die Kraft, die auf irgend-
einen in die Strömung eingetauchten Körper ausgeübt wird,
zleich Null.
Andererseits haben die Helmholtzschen Sätze und die Thomsonsche
Erweiterung dazu (S. 20 u. 21) gezeigt, daß bei der Annahme einer idealen
reibungslosen Flüssigkeit Wirbel nicht entstehen können. Wir erkennen
laraus, daß für die Theorie der Kräfte, die von einem Luftstrom auf
einen Körper ausgeübt werden, oder, was ja dasselbe ist, die ein Körper
arfährt, der mit einer gewissen Geschwindigkeit durch die Luft bewegt
wird, eine erhebliche Schwierigkeit vorliegt. Das erhaltene Paradoxon
hat tatsächlich längere Zeit der Erklärung von Auftrieb und Widerstand
aines Flugzeugtragflügels Schwierigkeit bereitet!.
» Es sei hierzu auf die Erörterungen des Kap. VII 86 hingewiesen.