ee
7142 Mechanik tropfbar flüssiger Körper.
Z
a. Für neue, bezw. reine Leitungen stimmt unter den bekannten theoret.
Formeln zur Bestimmung des Rohrleitungs-Widerstandes diejenige von Darcy
(Gleichg. 40) innerhalb der in der Praxis gewöhnlich vorkommenden Wasser-
geschwindigkeiten noch am besten mit den Erfahrungs-Resultaten überein und kann
auch auf Leitungen der grössten Durchmesser Anwendung finden.
b. Dagegen wird es ein vergebliches Bemühen sein und stets bleiben, ein
Gesetz für die fortschreitende Veränderung des Rohrleitungs-Widerstandes einer
bestehenden Leitung finden zu wollen, weil die Ablagerungen aus einem mehr
oder weniger unreinen Wasser je nach Umständen an einzelnen Stellen einer
Leitung stärker, an andern wieder schwächer auftreten werden, weil ferner .die
Inkrustation bald in Rostbildung, bald m Schlammbildung und bald in Muschel-
bildung bestehen kann. Es ist deshalb unzweifelhaft, dass die Abnahme der
Leitungsfähigkeit eines Rohrstranges bald rasch, bald langsam erfolgen wird.
Aus den Untersuchungen über den Leitungswiderstand alter Leitungen ergab
sich im allgemeinen, dass für das Maass der Zunahme des Leitungswiderstandes
besonders noch die Grösse des Rohrdurchmessers d von Bedeutung ist, da
unter sonst gleichen Umständen bei weiten Leitungen die Widerstände langsamer
wachsen, als bei engen”).
Die Stuttgarter Versuche bezogen sich zum grössten Theil auf neue, bezw.
reine Rohrleitungen; es konnten aus denselben folgende Schlüsse gezogen werden**):
1. Der grössere Theil der wirklich konstatirten Druckverluste war grösser,
als solche sich nach den bekannten Formeln von Prony, Weisbach und Darcy
berechnen; insbesondere bei engern Leitungen (d< 0,101 wm). Indess liegen hierbei
theilweise örtliche Verhältnisse zu Grunde.
2. Für die weitern (d = 0,202 m und 0,252 m) unter günstigeren Verhältnissen
angelegten Leitungen ergeben die Formeln von Weisbach und Prony bezüglich
der Druckverluste höhere Resultate, als die gemessenen, zeieen also für solche
Fälle genügende Sicherheit. Bei den engen Leitungen (d < 0,050 m) ergiebt die
Formel von Darcy grössere Sicherheit.
3. Der Werth von } nach Darcy (Gleichg. 40) mit etwas erhöhten Werthen
der Konstanten würde den gemachten Beobachtungen am besten entsprechen,
wogegen sich eine Abhängigkeit zwischen A und u für gleiche d-Werthe in nur
geringem Grade bemerkbar machte.
In den vorstehend besprochenen Versuchen ist noch unaufgeklärt geblieben,
in welcher Weise bei neuen, bezw. reinen Leitungsröhren mit ziemlich glatter
Innenfläche der gleichzeitige Einfluss von u und d auf den Werth } sich geltend
macht, ob namentlich die von Hagen gewählte Formel für } bei Fortfall aller
besondern Widerstände, also bei einer. durchaus geraden Rohrstrecke mit der
Praxis überein stimmende Werthe liefert oder nicht.
g. Besondere Widerstände.
«. Plötzlicher Querschn.- Wechsel im allgemeinen.
Der Wasserstrom gehe aus einem Rohr vom Querschn. F, in ein kleineres
vom Querschn. #5 über; an der Uebergangstelle finde vollkommene Einschnürung
Fig- 706. statt, Fig. 706. Nach Gleiche. (1) und (2) ist:
f ) yo Us — U” ; ä g
u af BEN U N0 5 -+ Bund: A w=R,w=e«eFR;u,
% 29
zz » . r* s > vr 1. .
E BG ferner die Widerstandshöhe BR für den Eintritt des
Z
: 2% Wassers in das Rohr F, nach Gleiche. (5):
(u Us)? U”
B= ER en
29 29
ER Se \?
folglich: 5 | E)e (42)
74
Mit « = 0,64 wird: £= 0,316 Weeen der Widerstände beim Eintritt des
Wassers in die Mündung selbst, ist £ grösser und zwar {= 0,505 (43) zu setzen.
Dieser Werth ist namentlich als Widerstandskoeffiz. für den Eintritt des Wassers
in Röhrenleitungen aus grösseren Sammelbehältern zu benutzen.
*) Jben. ID6n.:. Al 80:8: 8058