219
n =
g
crown cover
ìable c.
l
n
P
plots results:
plot measure-
. When c
n
P
population,
Developing this form gives:
S . n . n = p.n +q.n , of which
g p P H g
n and n are derived as follows:
g P
p. n
„ and n = —k
,2 p ^2
q. n
n
g
& S np - q
Sng- p
Considering now the first of the two conditions: a minimum of cost for a given
2
standard error, the product CS must be developed first:
CS = ( n c + n c )
g g P P
J2_ + _£L
n n
g P
n g ÜP % “g . q.c
= —. p. c + —. q. c + —. p. c + —“ g
n ^ g n p n p n
g 5 p g p
q. n
Substituting n = ~ 2 —in order to find n , gives:
S - p
n
g
2 n g
CS = P- c g + c l- C p + n ' P ' C
+ —^ . c (n S 2 - p)
p . 0 2 . n q ' g ' g
y (n g S - p) g h & &
p. q. c 2
q. cp + Ö—^ + p. c + n c . S - p. c
(n g S 2 - p) S g S g
p. q. c 2
q. cp + 9 + * c p- * S *
(n g S Z - p) g S
Differentiating for n gives:
o
ÉJCSZL . c s
d n^, g
2 p - q • V S
(n S 2 - p) 2
g '
Equating to zero:
s 2
(n S 2 - p) 2
v g
2 2
c (n S - p) - p. q. c
g v g vi P
= 0
or
g g
which leads to:
. c 2 ,2 A
c.. ( n S - p ) - p. q. c = 0,
P • q • C